diff --git a/packages/kbot/cat_gen_0.png b/packages/kbot/cat_gen_0.png
deleted file mode 100644
index f8701a11..00000000
Binary files a/packages/kbot/cat_gen_0.png and /dev/null differ
diff --git a/packages/kbot/dist-in/commands/images.js b/packages/kbot/dist-in/commands/images.js
index 872dc29d..96daedef 100644
--- a/packages/kbot/dist-in/commands/images.js
+++ b/packages/kbot/dist-in/commands/images.js
@@ -484,4 +484,4 @@ export const imageCommand = async (argv) => {
logger.error('Failed to parse options or generate image:', error.message, error.issues, error.stack);
}
};
-//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL2NvbW1hbmRzL2ltYWdlcy50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsQ0FBQyxFQUFFLE1BQU0sS0FBSyxDQUFDO0FBQ3hCLE9BQU8sS0FBSyxJQUFJLE1BQU0sV0FBVyxDQUFDO0FBQ2xDLE9BQU8sRUFBRSxJQUFJLElBQUksS0FBSyxFQUFFLE1BQU0sb0JBQW9CLENBQUM7QUFDbkQsT0FBTyxFQUFFLElBQUksSUFBSSxNQUFNLEVBQUUsTUFBTSxxQkFBcUIsQ0FBQztBQUNyRCxPQUFPLEVBQ0gsWUFBWSxFQUNaLFFBQVEsRUFDUixVQUFVLEVBQ2IsTUFBTSxTQUFTLENBQUM7QUFDakIsT0FBTyxFQUFXLE1BQU0sRUFBRSxNQUFNLE9BQU8sQ0FBQztBQUN4QyxPQUFPLEVBQUUsU0FBUyxFQUFFLE1BQU0saUJBQWlCLENBQUM7QUFDNUMsT0FBTyxFQUFFLE9BQU8sRUFBRSxNQUFNLG1CQUFtQixDQUFDO0FBRTVDLE9BQU8sRUFBRSxPQUFPLEVBQUUsUUFBUSxFQUFFLE1BQU0sMkJBQTJCLENBQUM7QUFFOUQsT0FBTyxFQUFFLGFBQWEsRUFBRSxNQUFNLGtCQUFrQixDQUFDO0FBQ2pELE9BQU8sRUFBRSxXQUFXLEVBQUUsU0FBUyxFQUFFLE1BQU0seUJBQXlCLENBQUM7QUFDakUsT0FBTyxFQUFFLE1BQU0sSUFBSSxhQUFhLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFDdkQsT0FBTyxFQUFFLEtBQUssRUFBRSxNQUFNLG9CQUFvQixDQUFDO0FBQzNDLE9BQU8sRUFBRSxVQUFVLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFFMUMsU0FBUyxzQkFBc0IsQ0FBQyxHQUF1QixFQUFFLFFBQWtCO0lBQ3ZFLElBQUksTUFBYyxDQUFDO0lBRW5CLElBQUksR0FBRyxFQUFFLENBQUM7UUFDTixNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFDO1FBQ3RDLE1BQU0sT0FBTyxHQUFHLE1BQU0sQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUM7UUFDbkUsSUFBSSxPQUFPLElBQUksT0FBTyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7WUFDbkMsTUFBTSxHQUFHLFdBQVcsQ0FBQztRQUN6QixDQUFDO2FBQU0sQ0FBQztZQUNKLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFdBQVcsQ0FBQyxDQUFDO1FBQ3ZDLENBQUM7SUFDTCxDQUFDO1NBQU0sSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQzdCLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3ZDLENBQUM7U0FBTSxDQUFDO1FBQ0osTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLGtDQUFrQztJQUM5RCxDQUFDO0lBRUQsSUFBSSxZQUFZLENBQUM7SUFDakIsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRVYsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQ3RCLE1BQU0sZ0JBQWdCLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9FLE1BQU0sS0FBSyxHQUFHLGdCQUFnQixDQUFDLEtBQUssQ0FBQyxhQUFhLENBQUMsQ0FBQztRQUNwRCxJQUFJLEtBQUssSUFBSSxLQUFLLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDdkIsWUFBWSxHQUFHLGdCQUFnQixDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO1lBQzFELENBQUMsR0FBRyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNuQyxDQUFDO2FBQU0sQ0FBQztZQUNKLFlBQVksR0FBRyxnQkFBZ0IsQ0FBQztRQUNwQyxDQUFDO0lBQ0wsQ0FBQztTQUFNLENBQUM7UUFDSixZQUFZLEdBQUcsV0FBVyxDQUFDO0lBQy9CLENBQUM7SUFFRCxJQUFJLFdBQVcsQ0FBQztJQUNoQixJQUFJLFlBQVksQ0FBQztJQUNqQixHQUFHLENBQUM7UUFDQSxXQUFXLEdBQUcsR0FBRyxZQUFZLFFBQVEsQ0FBQyxNQUFNLENBQUM7UUFDN0MsWUFBWSxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLFdBQVcsQ0FBQyxDQUFDO1FBQ2pELENBQUMsRUFBRSxDQUFDO0lBQ1IsQ0FBQyxRQUFRLE1BQU0sQ0FBQyxZQUFZLENBQUMsRUFBRTtJQUUvQixPQUFPLFlBQVksQ0FBQztBQUN4QixDQUFDO0FBRUQsU0FBUyxhQUFhO0lBRWxCLHNFQUFzRTtJQUN0RSxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLElBQUksR0FBRyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUM7SUFDbEUsb0ZBQW9GO0lBQ3BGLE1BQU0sY0FBYyxHQUFHLE9BQU8sQ0FBQyxRQUFRLEtBQUssT0FBTyxJQUFJLFNBQVMsQ0FBQyxVQUFVLENBQUMsR0FBRyxDQUFDO1FBQzVFLENBQUMsQ0FBQyxTQUFTLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQztRQUN4QixDQUFDLENBQUMsU0FBUyxDQUFDO0lBRVosTUFBTSxXQUFXLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxjQUFjLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO0lBRWpFLCtEQUErRDtJQUMvRCxJQUFJLFdBQW1CLENBQUM7SUFDeEIsSUFBSSxjQUFzQixDQUFDO0lBRTNCLFFBQVEsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQ3ZCLEtBQUssT0FBTztZQUNSLFdBQVcsR0FBRyxRQUFRLENBQUM7WUFDdkIsY0FBYyxHQUFHLGVBQWUsQ0FBQztZQUNqQyxNQUFNO1FBQ1YsS0FBSyxRQUFRO1lBQ1QsV0FBVyxHQUFHLFFBQVEsQ0FBQztZQUN2QixjQUFjLEdBQUcsV0FBVyxDQUFDO1lBQzdCLE1BQU07UUFDVixLQUFLLE9BQU87WUFDUixXQUFXLEdBQUcsVUFBVSxDQUFDO1lBQ3pCLGNBQWMsR0FBRyxXQUFXLENBQUM7WUFDN0IsTUFBTTtRQUNWO1lBQ0ksTUFBTSxJQUFJLEtBQUssQ0FBQyx5QkFBeUIsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUM7SUFDckUsQ0FBQztJQUVELE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsTUFBTSxFQUFFLFdBQVcsRUFBRSxjQUFjLENBQUMsQ0FBQztBQUN2RSxDQUFDO0FBRUQsTUFBTSxDQUFDLE1BQU0sa0JBQWtCLEdBQUcsR0FBRyxFQUFFO0lBQ25DLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDLElBQUksQ0FBQztRQUNwQyxNQUFNLEVBQUUsSUFBSTtRQUNaLE9BQU8sRUFBRSxJQUFJO1FBQ2IsR0FBRyxFQUFFLElBQUk7UUFDVCxLQUFLLEVBQUUsSUFBSTtRQUNYLFFBQVEsRUFBRSxJQUFJO1FBQ2QsTUFBTSxFQUFFLElBQUk7UUFDWixPQUFPLEVBQUUsSUFBSTtRQUNiLEdBQUcsRUFBRSxJQUFJO0tBQ1osQ0FBQyxDQUFDO0lBRUgsT0FBTyxVQUFVLENBQUMsTUFBTSxDQUFDO1FBQ3JCLEdBQUcsRUFBRSxDQUFDLENBQUMsT0FBTyxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDBCQUEwQixDQUFDO1FBQ2hFLEtBQUssRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsT0FBTyxDQUFDLGdDQUFnQyxDQUFDLENBQUMsUUFBUSxDQUFDLCtDQUErQyxDQUFDO1FBQ3JILEdBQUcsRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxDQUFDLGtEQUFrRCxDQUFDO1FBQzVFLE1BQU0sRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDJDQUEyQyxDQUFDO0tBQ3RGLENBQUMsQ0FBQztBQUNQLENBQUMsQ0FBQTtBQUVELEtBQUssVUFBVSxxQkFBcUIsQ0FBQyxJQUFTO0lBQzFDLE1BQU0sTUFBTSxHQUFHLElBQUksTUFBTSxDQUFVO1FBQy9CLFFBQVEsRUFBRSxDQUFDLEVBQUUsOEJBQThCO1FBQzNDLGlCQUFpQixFQUFFLHdFQUF3RTtLQUM5RixDQUFDLENBQUM7SUFFSCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsUUFBUSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQ3BDLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDO1FBQ25DLE1BQU0sQ0FBQyxJQUFJLENBQUMsa0JBQWtCLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDNUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDO1lBQ3RCLE9BQU8sTUFBTSxDQUFDLElBQUksS0FBSyxDQUFDLGlDQUFpQyxVQUFVLDhFQUE4RSxDQUFDLENBQUMsQ0FBQztRQUN4SixDQUFDO1FBRUQsd0JBQXdCO1FBQ3hCLE1BQU0sSUFBSSxHQUFhLEVBQUUsQ0FBQztRQUUxQixvQkFBb0I7UUFDcEIsSUFBSSxJQUFJLENBQUMsT0FBTyxFQUFFLENBQUM7WUFDZixNQUFNLFFBQVEsR0FBRyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7WUFDN0UsTUFBTSxnQkFBZ0IsR0FBRyxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzVELElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxnQkFBZ0IsQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxjQUFjO1FBQ2QsTUFBTSxNQUFNLEdBQUcsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO1FBQ2hDLE1BQU0sTUFBTSxHQUFHLElBQUksQ0FBQyxPQUFPLElBQUksTUFBTSxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUM7UUFDbkQsSUFBSSxNQUFNLEVBQUUsQ0FBQztZQUNULElBQUksQ0FBQyxJQUFJLENBQUMsV0FBVyxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxVQUFVO1FBQ1YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDWCxJQUFJLENBQUMsSUFBSSxDQUFDLE9BQU8sRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUM7UUFDakMsQ0FBQztRQUVELGFBQWE7UUFDYixJQUFJLElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztZQUNkLElBQUksQ0FBQyxJQUFJLENBQUMsVUFBVSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUN2QyxDQUFDO1FBRUQsTUFBTSxZQUFZLEdBQUcsS0FBSyxDQUFDLFVBQVUsRUFBRSxJQUFJLEVBQUUsRUFBRSxLQUFLLEVBQUUsQ0FBQyxNQUFNLEVBQUUsTUFBTSxFQUFFLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUVsRixJQUFJLE1BQU0sR0FBRyxFQUFFLENBQUM7UUFDaEIsSUFBSSxXQUFXLEdBQUcsRUFBRSxDQUFDO1FBRXJCLFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxLQUFLLEVBQUUsSUFBSSxFQUFFLEVBQUU7WUFDMUMsTUFBTSxLQUFLLEdBQUcsSUFBSSxDQUFDLFFBQVEsRUFBRSxDQUFDO1lBRTlCLHlDQUF5QztZQUN6QyxNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBQzVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNqQyxJQUFJLE9BQU8sQ0FBQyxJQUFJLEtBQUssZ0JBQWdCLEVBQUUsQ0FBQzt3QkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQyxxQ0FBcUMsQ0FBQyxDQUFDO3dCQUVuRCwyQ0FBMkM7d0JBQzNDLE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDaEMsTUFBTSxNQUFNLEdBQUcsSUFBSSxDQUFDLE9BQU8sSUFBSSxNQUFNLEVBQUUsTUFBTSxFQUFFLEdBQUcsQ0FBQzt3QkFDbkQsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDO3dCQUNuRyxNQUFNLGdCQUFnQixHQUFHLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBRTVELE1BQU0sY0FBYyxHQUFHOzRCQUNuQixHQUFHLEVBQUUsNEJBQTRCOzRCQUNqQyxNQUFNLEVBQUUsSUFBSSxDQUFDLE1BQU0sSUFBSSxJQUFJOzRCQUMzQixHQUFHLEVBQUUsSUFBSSxDQUFDLEdBQUcsSUFBSSxJQUFJOzRCQUNyQixNQUFNLEVBQUUsTUFBTSxJQUFJLElBQUk7NEJBQ3RCLEtBQUssRUFBRSxnQkFBZ0I7eUJBQzFCLENBQUM7d0JBRUYsTUFBTSxVQUFVLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxjQUFjLENBQUMsQ0FBQzt3QkFDbEQsTUFBTSxDQUFDLElBQUksQ0FBQyw2QkFBNkIsRUFBRSxVQUFVLENBQUMsQ0FBQzt3QkFDdkQsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQyxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxFQUFFLGNBQWMsQ0FBQyxDQUFDO3dCQUU5RCxrQkFBa0I7d0JBQ2xCLEtBQUssTUFBTSxTQUFTLElBQUksZ0JBQWdCLEVBQUUsQ0FBQzs0QkFDdkMsSUFBSSxDQUFDO2dDQUNELElBQUksTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0NBQ3BCLE1BQU0sV0FBVyxHQUFHLFlBQVksQ0FBQyxTQUFTLENBQUMsQ0FBQztvQ0FDNUMsTUFBTSxNQUFNLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztvQ0FDOUMsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQyxXQUFXLEVBQUUsS0FBSyxNQUFNLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsWUFBWSxDQUFDO29DQUMvRixNQUFNLFFBQVEsR0FBRyxJQUFJLENBQUMsUUFBUSxDQUFDLFNBQVMsQ0FBQyxDQUFDO29DQUUxQyxNQUFNLGFBQWEsR0FBRzt3Q0FDbEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsTUFBTTt3Q0FDTixRQUFRO3dDQUNSLFFBQVEsRUFBRSxTQUFTO3FDQUN0QixDQUFDO29DQUVGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7b0NBQ2hFLE1BQU0sQ0FBQyxJQUFJLENBQUMsdUJBQXVCLFFBQVEsS0FBSyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxNQUFNLEdBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDO2dDQUN6RixDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLHlCQUF5QixTQUFTLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7NEJBQ3RFLENBQUM7d0JBQ0wsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxnQkFBZ0IsRUFBRSxDQUFDO3dCQUMzQyxNQUFNLENBQUMsSUFBSSxDQUFDLHFDQUFxQyxDQUFDLENBQUM7d0JBQ25ELE1BQU0sWUFBWSxHQUFHLE9BQU8sQ0FBQyxJQUFJLENBQUM7d0JBQ2xDLElBQUksWUFBWSxJQUFJLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDOzRCQUN6QyxJQUFJLENBQUM7Z0NBQ0QsSUFBSSxNQUFNLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQztvQ0FDdkIsVUFBVSxDQUFDLFlBQVksQ0FBQyxDQUFDO29DQUN6QixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxZQUFZLEVBQUUsQ0FBQyxDQUFDO29DQUM1RCxNQUFNLGVBQWUsR0FBRzt3Q0FDcEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsSUFBSSxFQUFFLFlBQVk7cUNBQ3JCLENBQUM7b0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxlQUFlLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDdEUsQ0FBQztxQ0FBTSxDQUFDO29DQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUNBQW1DLFlBQVksRUFBRSxDQUFDLENBQUM7b0NBQy9ELE1BQU0sYUFBYSxHQUFHO3dDQUNsQixHQUFHLEVBQUUscUJBQXFCO3dDQUMxQixJQUFJLEVBQUUsWUFBWTt3Q0FDbEIsS0FBSyxFQUFFLDJCQUEyQjtxQ0FDckMsQ0FBQztvQ0FDRixZQUFZLENBQUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDO2dDQUNwRSxDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixZQUFZLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3hFLE1BQU0sYUFBYSxHQUFHO29DQUNsQixHQUFHLEVBQUUscUJBQXFCO29DQUMxQixJQUFJLEVBQUUsWUFBWTtvQ0FDbEIsS0FBSyxFQUFFLEtBQUssQ0FBQyxPQUFPO2lDQUN2QixDQUFDO2dDQUNGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7NEJBQ3BFLENBQUM7d0JBQ0wsQ0FBQzs2QkFBTSxDQUFDOzRCQUNKLE1BQU0sQ0FBQyxLQUFLLENBQUMsbURBQW1ELENBQUMsQ0FBQzt3QkFDdEUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxrQkFBa0IsRUFBRSxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLHlDQUF5QyxDQUFDLENBQUM7d0JBRXZELHlEQUF5RDt3QkFDekQsTUFBTSxTQUFTLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQzt3QkFDakMsTUFBTSxRQUFRLEdBQUcsT0FBTyxDQUFDLEtBQUssSUFBSSxFQUFFLENBQUM7d0JBQ3JDLE1BQU0sTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLENBQUM7d0JBRTNCLDJFQUEyRTt3QkFDM0UsSUFBSSxDQUFDOzRCQUVELE1BQU0sWUFBWSxHQUFHLHNCQUFzQixDQUFDLE1BQU0sRUFBRSxRQUFRLENBQUMsQ0FBQzs0QkFDOUQsTUFBTSxDQUFDLElBQUksQ0FBQyx1REFBdUQsWUFBWSxFQUFFLENBQUMsQ0FBQzs0QkFFbkYsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsU0FBUyxHQUFHLENBQUMsQ0FBQzs0QkFFNUQsSUFBSSxXQUFXLEdBQWtCLElBQUksQ0FBQzs0QkFFdEMsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO2dDQUN0QixnQkFBZ0I7Z0NBQ2hCLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFFBQVEsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixTQUFTLEdBQUcsQ0FBQyxDQUFDO2dDQUNyRixNQUFNLGFBQWEsR0FBRyxrQkFBa0IsRUFBRSxDQUFDLEtBQUssQ0FBQztvQ0FDN0MsR0FBRyxJQUFJO29DQUNQLE1BQU0sRUFBRSxTQUFTO29DQUNqQixPQUFPLEVBQUUsUUFBUTtvQ0FDakIsR0FBRyxFQUFFLFlBQVksQ0FBQyxtQkFBbUI7aUNBQ3hDLENBQUMsQ0FBQztnQ0FDSCxXQUFXLEdBQUcsTUFBTSxTQUFTLENBQUMsU0FBUyxFQUFFLFFBQVEsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDdEUsQ0FBQztpQ0FBTSxDQUFDO2dDQUNKLGlCQUFpQjtnQ0FDakIsTUFBTSxDQUFDLElBQUksQ0FBQyxnQ0FBZ0MsU0FBUyxHQUFHLENBQUMsQ0FBQztnQ0FDMUQsTUFBTSxZQUFZLEdBQUcsRUFBRSxHQUFHLElBQUksRUFBRSxDQUFDO2dDQUNqQyxPQUFPLFlBQVksQ0FBQyxPQUFPLENBQUM7Z0NBQzVCLE1BQU0sYUFBYSxHQUFHLGtCQUFrQixFQUFFLENBQUMsS0FBSyxDQUFDO29DQUM3QyxHQUFHLFlBQVk7b0NBQ2YsTUFBTSxFQUFFLFNBQVM7b0NBQ2pCLEdBQUcsRUFBRSxZQUFZLENBQUMsbUJBQW1CO2lDQUN4QyxDQUFDLENBQUM7Z0NBQ0gsV0FBVyxHQUFHLE1BQU0sV0FBVyxDQUFDLFNBQVMsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDOUQsQ0FBQzs0QkFFRCxJQUFJLFdBQVcsRUFBRSxDQUFDO2dDQUNkLEtBQUssQ0FBQyxZQUFZLEVBQUUsV0FBVyxDQUFDLENBQUM7Z0NBQ2pDLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFlBQVksRUFBRSxDQUFDLENBQUM7Z0NBRWpELHVEQUF1RDtnQ0FDdkQsTUFBTSxZQUFZLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztnQ0FFcEQsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSwyQkFBMkI7b0NBQ2hDLE1BQU0sRUFBRSxZQUFZO29DQUNwQixRQUFRLEVBQUUsV0FBVztvQ0FDckIsUUFBUSxFQUFFLFlBQVk7aUNBQ3pCLENBQUM7Z0NBRUYsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDaEUsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsSUFBSSxDQUFDLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDLENBQUM7NEJBQ2pGLENBQUM7aUNBQU0sQ0FBQztnQ0FDSixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixDQUFDLENBQUM7Z0NBRTNDLHlCQUF5QjtnQ0FDekIsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSxrQkFBa0I7b0NBQ3ZCLEtBQUssRUFBRSwwQkFBMEI7aUNBQ3BDLENBQUM7Z0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzs0QkFDcEUsQ0FBQzt3QkFDTCxDQUFDO3dCQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7NEJBQ2IsTUFBTSxZQUFZLEdBQUcsS0FBSyxZQUFZLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDOzRCQUM1RSxNQUFNLFVBQVUsR0FBRyxLQUFLLFlBQVksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxTQUFTLENBQUM7NEJBRXBFLE9BQU8sQ0FBQyxHQUFHLENBQUMsc0JBQXNCLEVBQUUsS0FBSyxFQUFDLFlBQVksQ0FBQyxDQUFDOzRCQUV4RCxNQUFNLENBQUMsS0FBSyxDQUFDLHFCQUFxQixFQUFFO2dDQUNoQyxPQUFPLEVBQUUsWUFBWTtnQ0FDckIsS0FBSyxFQUFFLFVBQVU7Z0NBQ2pCLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO2dDQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO2dDQUNoQyxLQUFLLEVBQUUsUUFBUSxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUM7NkJBQzlDLENBQUMsQ0FBQzs0QkFFSCxrQ0FBa0M7NEJBQ2xDLE1BQU0sYUFBYSxHQUFHO2dDQUNsQixHQUFHLEVBQUUsa0JBQWtCO2dDQUN2QixLQUFLLEVBQUUsWUFBWTtnQ0FDbkIsT0FBTyxFQUFFO29DQUNMLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO29DQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO29DQUNoQyxTQUFTLEVBQUUsSUFBSSxJQUFJLEVBQUUsQ0FBQyxXQUFXLEVBQUU7aUNBQ3RDOzZCQUNKLENBQUM7NEJBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzt3QkFDcEUsQ0FBQztvQkFDTCxDQUFDO2dCQUNMLENBQUM7Z0JBQUMsT0FBTyxDQUFDLEVBQUUsQ0FBQztvQkFDVCw0Q0FBNEM7b0JBQzVDLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDO29CQUN2RCxNQUFNLElBQUksSUFBSSxHQUFHLElBQUksQ0FBQztnQkFDMUIsQ0FBQztZQUNMLENBQUM7UUFDTCxDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFO1lBQ3BDLE1BQU0sS0FBSyxHQUFHLElBQUksQ0FBQyxRQUFRLEVBQUUsQ0FBQztZQUM5QixNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBRTVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNwQyxJQUFJLFVBQVUsQ0FBQyxLQUFLLElBQUksVUFBVSxDQUFDLE9BQU8sRUFBRSxDQUFDO3dCQUN6QyxxQ0FBcUM7d0JBRXJDLGdDQUFnQzt3QkFDaEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLG1DQUFtQzs0QkFDMUQsVUFBVSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN0RSxPQUFPLENBQUMsd0JBQXdCO3dCQUNwQyxDQUFDO3dCQUVELHdDQUF3Qzt3QkFDeEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLHdCQUF3QixJQUFJLFVBQVUsQ0FBQyxJQUFJLEVBQUUsT0FBTyxFQUFFLENBQUM7NEJBQzlFLElBQUksQ0FBQztnQ0FDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLFVBQVUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3BELElBQUksT0FBTyxDQUFDLEdBQUcsRUFBRSxDQUFDO29DQUNkLE1BQU0sQ0FBQyxJQUFJLENBQUMsZ0JBQWdCLE9BQU8sQ0FBQyxHQUFHLEVBQUUsRUFBRTt3Q0FDdkMsTUFBTSxFQUFFLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLElBQUksT0FBTyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sQ0FBQyxNQUFNLENBQUMsTUFBTSxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDckgsR0FBRyxFQUFFLE9BQU8sQ0FBQyxHQUFHO3dDQUNoQixLQUFLLEVBQUUsT0FBTyxDQUFDLEtBQUssRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsT0FBTyxDQUFDLEtBQUssQ0FBQyxNQUFNLFFBQVEsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDMUUsU0FBUyxFQUFFLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTTtxQ0FDOUIsQ0FBQyxDQUFDO29DQUNILE9BQU87Z0NBQ1gsQ0FBQzs0QkFDTCxDQUFDOzRCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7Z0NBQ1Qsa0NBQWtDOzRCQUN0QyxDQUFDO3dCQUNMLENBQUM7d0JBRUQsUUFBUSxVQUFVLENBQUMsS0FBSyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7NEJBQ3JDLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVixLQUFLLE1BQU07Z0NBQ1AsTUFBTSxDQUFDLElBQUksQ0FBQyxNQUFNLFVBQVUsQ0FBQyxPQUFPLEVBQUUsRUFBRSxVQUFVLENBQUMsSUFBSSxDQUFDLENBQUM7Z0NBQ3pELE1BQU07NEJBQ1YsS0FBSyxNQUFNO2dDQUNQLE1BQU0sQ0FBQyxJQUFJLENBQUMsTUFBTSxVQUFVLENBQUMsT0FBTyxFQUFFLEVBQUUsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO2dDQUN6RCxNQUFNOzRCQUNWLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVjtnQ0FDSSxNQUFNLENBQUMsSUFBSSxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDakUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLENBQUM7d0JBQ0oseURBQXlEO3dCQUN6RCxNQUFNLENBQUMsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDNUIsQ0FBQztnQkFDTCxDQUFDO2dCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7b0JBQ1Qsa0VBQWtFO29CQUNsRSxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQzt3QkFDOUIsbUNBQW1DO3dCQUNuQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsa0NBQWtDLENBQUM7NEJBQ2pELElBQUksQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN4RCxPQUFPLENBQUMsYUFBYTt3QkFDekIsQ0FBQzt3QkFDRCx3REFBd0Q7d0JBQ3hELElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsc0JBQXNCLENBQUMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxFQUFFLENBQUM7NEJBQ3pHLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsbUJBQW1CLEVBQUUsRUFBRSxDQUFDLENBQUMsT0FBTyxDQUFDLFVBQVUsRUFBRSxFQUFFLENBQUMsQ0FBQzs0QkFDbEYsTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsV0FBVyxDQUFDLENBQUM7d0JBQ25DLENBQUM7b0JBQ0wsQ0FBQzt5QkFBTSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDO3dCQUNyQixnQ0FBZ0M7d0JBQ2hDLE1BQU0sQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUM1QixDQUFDO2dCQUNMLENBQUM7WUFDTCxDQUFDO1lBQ0QsV0FBVyxJQUFJLEtBQUssQ0FBQztRQUN6QixDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxFQUFFLENBQUMsT0FBTyxFQUFFLENBQUMsSUFBSSxFQUFFLEVBQUU7WUFDOUIsTUFBTSxDQUFDLElBQUksQ0FBQywrQkFBK0IsRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNuRCxNQUFNLENBQUMsSUFBSSxDQUFDLGVBQWUsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUM7WUFDckQsTUFBTSxDQUFDLElBQUksQ0FBQyxlQUFlLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDO1lBRTFELElBQUksSUFBSSxLQUFLLENBQUMsRUFBRSxDQUFDO2dCQUNiLE1BQU0sYUFBYSxHQUFHLE1BQU0sQ0FBQyxJQUFJLEVBQUUsQ0FBQztnQkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQywyQkFBMkIsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxDQUFDLENBQUM7Z0JBQ3hFLFFBQVEsQ0FBQyxhQUFhLElBQUksSUFBSSxDQUFDLENBQUM7WUFDcEMsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLEtBQUssQ0FBQyw4QkFBOEIsSUFBSSxhQUFhLFdBQVcsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUNwRixDQUFDO1FBQ0wsQ0FBQyxDQUFDLENBQUM7UUFFSCxZQUFZLENBQUMsRUFBRSxDQUFDLE9BQU8sRUFBRSxDQUFDLEdBQUcsRUFBRSxFQUFFO1lBQzdCLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNoQixDQUFDLENBQUMsQ0FBQztJQUNQLENBQUMsQ0FBQyxDQUFDO0FBQ1AsQ0FBQztBQUdELE1BQU0sQ0FBQyxNQUFNLFlBQVksR0FBRyxLQUFLLEVBQUUsSUFBUyxFQUFFLEVBQUU7SUFDNUMsTUFBTSxNQUFNLEdBQUcsSUFBSSxNQUFNLENBQVUsRUFBRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVEsSUFBSSxDQUFDLEVBQUUsQ0FBQyxDQUFDO0lBRXJFLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO1FBQ1gsSUFBSSxDQUFDO1lBQ0QsTUFBTSxTQUFTLEdBQUcsTUFBTSxxQkFBcUIsQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUNwRCxJQUFJLFNBQVMsRUFBRSxDQUFDO2dCQUNaLE1BQU0sT0FBTyxHQUFHLElBQUksQ0FBQyxLQUFLLENBQUMsU0FBUyxDQUFDLENBQUM7Z0JBQ3RDLElBQUksQ0FBQyxNQUFNLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQztnQkFDN0IsSUFBSSxPQUFPLENBQUMsS0FBSyxJQUFJLE9BQU8sQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO29CQUM1QyxJQUFJLENBQUMsT0FBTyxHQUFHLE9BQU8sQ0FBQyxLQUFLLENBQUM7Z0JBQ2pDLENBQUM7Z0JBQ0QsSUFBSSxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUM7b0JBQ2QsSUFBSSxDQUFDLEdBQUcsR0FBRyxPQUFPLENBQUMsR0FBRyxDQUFDO2dCQUMzQixDQUFDO1lBQ0wsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsd0NBQXdDLENBQUMsQ0FBQztnQkFDdEQsT0FBTztZQUNYLENBQUM7UUFDTCxDQUFDO1FBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztZQUNiLE1BQU0sQ0FBQyxLQUFLLENBQUMsb0JBQW9CLEVBQUUsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDO1lBQ2xELE9BQU87UUFDWCxDQUFDO0lBQ0wsQ0FBQztJQUVELElBQUksSUFBSSxDQUFDLE9BQU8sSUFBSSxRQUFRLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7UUFDekMsSUFBSSxDQUFDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNsQyxDQUFDO0lBRUQsSUFBSSxDQUFDO1FBQ0QsTUFBTSxhQUFhLEdBQUcsa0JBQWtCLEVBQUUsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDdkQsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsR0FBRyxJQUFJLEVBQUUsR0FBRyxhQUFhLENBQUM7UUFFaEQsTUFBTSxhQUFhLEdBQUcsTUFBTSxhQUFhLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDekQsTUFBTSxNQUFNLEdBQUcsYUFBYSxFQUFFLE9BQWlCLElBQUksRUFBRSxDQUFDO1FBRXRELElBQUksQ0FBQyxNQUFNLElBQUksQ0FBQyxPQUFPLEVBQUUsQ0FBQztZQUN0QixNQUFNLENBQUMsS0FBSyxDQUFDLHlGQUF5RixDQUFDLENBQUM7WUFDeEcsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDUCxNQUFNLENBQUMsS0FBSyxDQUFDLG9EQUFvRCxDQUFDLENBQUM7WUFDbkUsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLFdBQVcsR0FBa0IsSUFBSSxDQUFDO1FBRXRDLElBQUksT0FBTyxJQUFJLE9BQU8sQ0FBQyxPQUFPLENBQUMsSUFBSSxPQUFPLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1lBQ3BELGdCQUFnQjtZQUNoQixLQUFLLE1BQU0sU0FBUyxJQUFJLE9BQU8sRUFBRSxDQUFDO2dCQUM5QixJQUFJLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0JBQ3JCLE1BQU0sQ0FBQyxLQUFLLENBQUMsNkJBQTZCLFNBQVMsRUFBRSxDQUFDLENBQUM7b0JBQ3ZELE9BQU87Z0JBQ1gsQ0FBQztZQUNMLENBQUM7WUFDRCxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7Z0JBQ1YsTUFBTSxDQUFDLEtBQUssQ0FBQyx5Q0FBeUMsQ0FBQyxDQUFDO2dCQUN4RCxPQUFPO1lBQ1gsQ0FBQztZQUNELE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLE9BQU8sQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ2pGLFdBQVcsR0FBRyxNQUFNLFNBQVMsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLGFBQWEsQ0FBQyxDQUFDO1FBQ2xFLENBQUM7YUFBTSxJQUFJLE1BQU0sRUFBRSxDQUFDO1lBQ2hCLGlCQUFpQjtZQUNqQixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ3ZELFdBQVcsR0FBRyxNQUFNLFdBQVcsQ0FBQyxNQUFNLEVBQUUsYUFBYSxDQUFDLENBQUM7UUFDM0QsQ0FBQztRQUVELElBQUksV0FBVyxFQUFFLENBQUM7WUFDZCxNQUFNLElBQUksR0FBRyxTQUFTLENBQUMsYUFBYSxDQUFDLENBQUM7WUFDdEMsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsR0FBRyxFQUFFLGFBQWEsQ0FBQyxHQUFHLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUNwRSxLQUFLLENBQUMsT0FBTyxFQUFFLFdBQVcsQ0FBQyxDQUFDO1lBQzVCLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDOUMsQ0FBQzthQUFNLENBQUM7WUFDSixNQUFNLENBQUMsS0FBSyxDQUFDLDJCQUEyQixDQUFDLENBQUM7UUFDOUMsQ0FBQztJQUVMLENBQUM7SUFBQyxPQUFPLEtBQUssRUFBRSxDQUFDO1FBQ2IsTUFBTSxDQUFDLEtBQUssQ0FBQyw0Q0FBNEMsRUFBRSxLQUFLLENBQUMsT0FBTyxFQUFFLEtBQUssQ0FBQyxNQUFNLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO0lBQ3pHLENBQUM7QUFDTCxDQUFDLENBQUMifQ==
\ No newline at end of file
+//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL2NvbW1hbmRzL2ltYWdlcy50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsQ0FBQyxFQUFFLE1BQU0sS0FBSyxDQUFDO0FBQ3hCLE9BQU8sS0FBSyxJQUFJLE1BQU0sV0FBVyxDQUFDO0FBQ2xDLE9BQU8sRUFBRSxJQUFJLElBQUksS0FBSyxFQUFFLE1BQU0sb0JBQW9CLENBQUM7QUFDbkQsT0FBTyxFQUFFLElBQUksSUFBSSxNQUFNLEVBQUUsTUFBTSxxQkFBcUIsQ0FBQztBQUNyRCxPQUFPLEVBQ0gsWUFBWSxFQUNaLFFBQVEsRUFDUixVQUFVLEVBQ2IsTUFBTSxTQUFTLENBQUM7QUFDakIsT0FBTyxFQUFXLE1BQU0sRUFBRSxNQUFNLE9BQU8sQ0FBQztBQUN4QyxPQUFPLEVBQUUsU0FBUyxFQUFFLE1BQU0saUJBQWlCLENBQUM7QUFDNUMsT0FBTyxFQUFFLE9BQU8sRUFBRSxNQUFNLG1CQUFtQixDQUFDO0FBRTVDLE9BQU8sRUFBRSxPQUFPLEVBQUUsUUFBUSxFQUFFLE1BQU0sMkJBQTJCLENBQUM7QUFFOUQsT0FBTyxFQUFFLGFBQWEsRUFBRSxNQUFNLGtCQUFrQixDQUFDO0FBQ2pELE9BQU8sRUFBRSxXQUFXLEVBQUUsU0FBUyxFQUFFLE1BQU0seUJBQXlCLENBQUM7QUFDakUsT0FBTyxFQUFFLE1BQU0sSUFBSSxhQUFhLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFDdkQsT0FBTyxFQUFFLEtBQUssRUFBRSxNQUFNLG9CQUFvQixDQUFDO0FBQzNDLE9BQU8sRUFBRSxVQUFVLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFFMUMsU0FBUyxzQkFBc0IsQ0FBQyxHQUF1QixFQUFFLFFBQWtCO0lBQ3ZFLElBQUksTUFBYyxDQUFDO0lBRW5CLElBQUksR0FBRyxFQUFFLENBQUM7UUFDTixNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFDO1FBQ3RDLE1BQU0sT0FBTyxHQUFHLE1BQU0sQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUM7UUFDbkUsSUFBSSxPQUFPLElBQUksT0FBTyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7WUFDbkMsTUFBTSxHQUFHLFdBQVcsQ0FBQztRQUN6QixDQUFDO2FBQU0sQ0FBQztZQUNKLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFdBQVcsQ0FBQyxDQUFDO1FBQ3ZDLENBQUM7SUFDTCxDQUFDO1NBQU0sSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQzdCLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3ZDLENBQUM7U0FBTSxDQUFDO1FBQ0osTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLGtDQUFrQztJQUM5RCxDQUFDO0lBRUQsSUFBSSxZQUFZLENBQUM7SUFDakIsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRVYsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQ3RCLE1BQU0sZ0JBQWdCLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9FLE1BQU0sS0FBSyxHQUFHLGdCQUFnQixDQUFDLEtBQUssQ0FBQyxhQUFhLENBQUMsQ0FBQztRQUNwRCxJQUFJLEtBQUssSUFBSSxLQUFLLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDdkIsWUFBWSxHQUFHLGdCQUFnQixDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO1lBQzFELENBQUMsR0FBRyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNuQyxDQUFDO2FBQU0sQ0FBQztZQUNKLFlBQVksR0FBRyxnQkFBZ0IsQ0FBQztRQUNwQyxDQUFDO0lBQ0wsQ0FBQztTQUFNLENBQUM7UUFDSixZQUFZLEdBQUcsV0FBVyxDQUFDO0lBQy9CLENBQUM7SUFFRCxJQUFJLFdBQVcsQ0FBQztJQUNoQixJQUFJLFlBQVksQ0FBQztJQUNqQixHQUFHLENBQUM7UUFDQSxXQUFXLEdBQUcsR0FBRyxZQUFZLFFBQVEsQ0FBQyxNQUFNLENBQUM7UUFDN0MsWUFBWSxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLFdBQVcsQ0FBQyxDQUFDO1FBQ2pELENBQUMsRUFBRSxDQUFDO0lBQ1IsQ0FBQyxRQUFRLE1BQU0sQ0FBQyxZQUFZLENBQUMsRUFBRTtJQUUvQixPQUFPLFlBQVksQ0FBQztBQUN4QixDQUFDO0FBRUQsU0FBUyxhQUFhO0lBRWxCLHNFQUFzRTtJQUN0RSxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLElBQUksR0FBRyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUM7SUFDbEUsb0ZBQW9GO0lBQ3BGLE1BQU0sY0FBYyxHQUFHLE9BQU8sQ0FBQyxRQUFRLEtBQUssT0FBTyxJQUFJLFNBQVMsQ0FBQyxVQUFVLENBQUMsR0FBRyxDQUFDO1FBQzVFLENBQUMsQ0FBQyxTQUFTLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQztRQUN4QixDQUFDLENBQUMsU0FBUyxDQUFDO0lBRVosTUFBTSxXQUFXLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxjQUFjLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO0lBRWpFLCtEQUErRDtJQUMvRCxJQUFJLFdBQW1CLENBQUM7SUFDeEIsSUFBSSxjQUFzQixDQUFDO0lBRTNCLFFBQVEsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQ3ZCLEtBQUssT0FBTztZQUNSLFdBQVcsR0FBRyxRQUFRLENBQUM7WUFDdkIsY0FBYyxHQUFHLGVBQWUsQ0FBQztZQUNqQyxNQUFNO1FBQ1YsS0FBSyxRQUFRO1lBQ1QsV0FBVyxHQUFHLFFBQVEsQ0FBQztZQUN2QixjQUFjLEdBQUcsV0FBVyxDQUFDO1lBQzdCLE1BQU07UUFDVixLQUFLLE9BQU87WUFDUixXQUFXLEdBQUcsVUFBVSxDQUFDO1lBQ3pCLGNBQWMsR0FBRyxXQUFXLENBQUM7WUFDN0IsTUFBTTtRQUNWO1lBQ0ksTUFBTSxJQUFJLEtBQUssQ0FBQyx5QkFBeUIsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUM7SUFDckUsQ0FBQztJQUVELE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsTUFBTSxFQUFFLFdBQVcsRUFBRSxjQUFjLENBQUMsQ0FBQztBQUN2RSxDQUFDO0FBRUQsTUFBTSxDQUFDLE1BQU0sa0JBQWtCLEdBQUcsR0FBRyxFQUFFO0lBQ25DLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDLElBQUksQ0FBQztRQUNwQyxNQUFNLEVBQUUsSUFBSTtRQUNaLE9BQU8sRUFBRSxJQUFJO1FBQ2IsR0FBRyxFQUFFLElBQUk7UUFDVCxLQUFLLEVBQUUsSUFBSTtRQUNYLFFBQVEsRUFBRSxJQUFJO1FBQ2QsTUFBTSxFQUFFLElBQUk7UUFDWixPQUFPLEVBQUUsSUFBSTtRQUNiLEdBQUcsRUFBRSxJQUFJO0tBQ1osQ0FBQyxDQUFDO0lBRUgsT0FBTyxVQUFVLENBQUMsTUFBTSxDQUFDO1FBQ3JCLEdBQUcsRUFBRSxDQUFDLENBQUMsT0FBTyxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDBCQUEwQixDQUFDO1FBQ2hFLEtBQUssRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsT0FBTyxDQUFDLGdDQUFnQyxDQUFDLENBQUMsUUFBUSxDQUFDLCtDQUErQyxDQUFDO1FBQ3JILEdBQUcsRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxDQUFDLGtEQUFrRCxDQUFDO1FBQzVFLE1BQU0sRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDJDQUEyQyxDQUFDO0tBQ3RGLENBQUMsQ0FBQztBQUNQLENBQUMsQ0FBQTtBQUVELEtBQUssVUFBVSxxQkFBcUIsQ0FBQyxJQUFTO0lBQzFDLE1BQU0sTUFBTSxHQUFHLElBQUksTUFBTSxDQUFVO1FBQy9CLFFBQVEsRUFBRSxDQUFDLEVBQUUsOEJBQThCO1FBQzNDLGlCQUFpQixFQUFFLHdFQUF3RTtLQUM5RixDQUFDLENBQUM7SUFFSCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsUUFBUSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQ3BDLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDO1FBQ25DLE1BQU0sQ0FBQyxJQUFJLENBQUMsa0JBQWtCLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDNUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDO1lBQ3RCLE9BQU8sTUFBTSxDQUFDLElBQUksS0FBSyxDQUFDLGlDQUFpQyxVQUFVLDhFQUE4RSxDQUFDLENBQUMsQ0FBQztRQUN4SixDQUFDO1FBRUQsd0JBQXdCO1FBQ3hCLE1BQU0sSUFBSSxHQUFhLEVBQUUsQ0FBQztRQUUxQixvQkFBb0I7UUFDcEIsSUFBSSxJQUFJLENBQUMsT0FBTyxFQUFFLENBQUM7WUFDZixNQUFNLFFBQVEsR0FBRyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7WUFDN0UsTUFBTSxnQkFBZ0IsR0FBRyxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzVELElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxnQkFBZ0IsQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxjQUFjO1FBQ2QsTUFBTSxNQUFNLEdBQUcsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO1FBQ2hDLE1BQU0sTUFBTSxHQUFHLElBQUksQ0FBQyxPQUFPLElBQUksTUFBTSxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUM7UUFDbkQsSUFBSSxNQUFNLEVBQUUsQ0FBQztZQUNULElBQUksQ0FBQyxJQUFJLENBQUMsV0FBVyxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxVQUFVO1FBQ1YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDWCxJQUFJLENBQUMsSUFBSSxDQUFDLE9BQU8sRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUM7UUFDakMsQ0FBQztRQUVELGFBQWE7UUFDYixJQUFJLElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztZQUNkLElBQUksQ0FBQyxJQUFJLENBQUMsVUFBVSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUN2QyxDQUFDO1FBRUQsTUFBTSxZQUFZLEdBQUcsS0FBSyxDQUFDLFVBQVUsRUFBRSxJQUFJLEVBQUUsRUFBRSxLQUFLLEVBQUUsQ0FBQyxNQUFNLEVBQUUsTUFBTSxFQUFFLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUVsRixJQUFJLE1BQU0sR0FBRyxFQUFFLENBQUM7UUFDaEIsSUFBSSxXQUFXLEdBQUcsRUFBRSxDQUFDO1FBRXJCLFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxLQUFLLEVBQUUsSUFBSSxFQUFFLEVBQUU7WUFDMUMsTUFBTSxLQUFLLEdBQUcsSUFBSSxDQUFDLFFBQVEsRUFBRSxDQUFDO1lBRTlCLHlDQUF5QztZQUN6QyxNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBQzVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNqQyxJQUFJLE9BQU8sQ0FBQyxJQUFJLEtBQUssZ0JBQWdCLEVBQUUsQ0FBQzt3QkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQyxxQ0FBcUMsQ0FBQyxDQUFDO3dCQUVuRCwyQ0FBMkM7d0JBQzNDLE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDaEMsTUFBTSxNQUFNLEdBQUcsSUFBSSxDQUFDLE9BQU8sSUFBSSxNQUFNLEVBQUUsTUFBTSxFQUFFLEdBQUcsQ0FBQzt3QkFDbkQsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDO3dCQUNuRyxNQUFNLGdCQUFnQixHQUFHLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBRTVELE1BQU0sY0FBYyxHQUFHOzRCQUNuQixHQUFHLEVBQUUsNEJBQTRCOzRCQUNqQyxNQUFNLEVBQUUsSUFBSSxDQUFDLE1BQU0sSUFBSSxJQUFJOzRCQUMzQixHQUFHLEVBQUUsSUFBSSxDQUFDLEdBQUcsSUFBSSxJQUFJOzRCQUNyQixNQUFNLEVBQUUsTUFBTSxJQUFJLElBQUk7NEJBQ3RCLEtBQUssRUFBRSxnQkFBZ0I7eUJBQzFCLENBQUM7d0JBRUYsTUFBTSxVQUFVLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxjQUFjLENBQUMsQ0FBQzt3QkFDbEQsTUFBTSxDQUFDLElBQUksQ0FBQyw2QkFBNkIsRUFBRSxVQUFVLENBQUMsQ0FBQzt3QkFDdkQsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQyxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxFQUFFLGNBQWMsQ0FBQyxDQUFDO3dCQUU5RCxrQkFBa0I7d0JBQ2xCLEtBQUssTUFBTSxTQUFTLElBQUksZ0JBQWdCLEVBQUUsQ0FBQzs0QkFDdkMsSUFBSSxDQUFDO2dDQUNELElBQUksTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0NBQ3BCLE1BQU0sV0FBVyxHQUFHLFlBQVksQ0FBQyxTQUFTLENBQUMsQ0FBQztvQ0FDNUMsTUFBTSxNQUFNLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztvQ0FDOUMsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQyxXQUFXLEVBQUUsS0FBSyxNQUFNLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsWUFBWSxDQUFDO29DQUMvRixNQUFNLFFBQVEsR0FBRyxJQUFJLENBQUMsUUFBUSxDQUFDLFNBQVMsQ0FBQyxDQUFDO29DQUUxQyxNQUFNLGFBQWEsR0FBRzt3Q0FDbEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsTUFBTTt3Q0FDTixRQUFRO3dDQUNSLFFBQVEsRUFBRSxTQUFTO3FDQUN0QixDQUFDO29DQUVGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7b0NBQ2hFLE1BQU0sQ0FBQyxJQUFJLENBQUMsdUJBQXVCLFFBQVEsS0FBSyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxNQUFNLEdBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDO2dDQUN6RixDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLHlCQUF5QixTQUFTLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7NEJBQ3RFLENBQUM7d0JBQ0wsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxnQkFBZ0IsRUFBRSxDQUFDO3dCQUMzQyxNQUFNLENBQUMsSUFBSSxDQUFDLHFDQUFxQyxDQUFDLENBQUM7d0JBQ25ELE1BQU0sWUFBWSxHQUFHLE9BQU8sQ0FBQyxJQUFJLENBQUM7d0JBQ2xDLElBQUksWUFBWSxJQUFJLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDOzRCQUN6QyxJQUFJLENBQUM7Z0NBQ0QsSUFBSSxNQUFNLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQztvQ0FDdkIsVUFBVSxDQUFDLFlBQVksQ0FBQyxDQUFDO29DQUN6QixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxZQUFZLEVBQUUsQ0FBQyxDQUFDO29DQUM1RCxNQUFNLGVBQWUsR0FBRzt3Q0FDcEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsSUFBSSxFQUFFLFlBQVk7cUNBQ3JCLENBQUM7b0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxlQUFlLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDdEUsQ0FBQztxQ0FBTSxDQUFDO29DQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUNBQW1DLFlBQVksRUFBRSxDQUFDLENBQUM7b0NBQy9ELE1BQU0sYUFBYSxHQUFHO3dDQUNsQixHQUFHLEVBQUUscUJBQXFCO3dDQUMxQixJQUFJLEVBQUUsWUFBWTt3Q0FDbEIsS0FBSyxFQUFFLDJCQUEyQjtxQ0FDckMsQ0FBQztvQ0FDRixZQUFZLENBQUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDO2dDQUNwRSxDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixZQUFZLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3hFLE1BQU0sYUFBYSxHQUFHO29DQUNsQixHQUFHLEVBQUUscUJBQXFCO29DQUMxQixJQUFJLEVBQUUsWUFBWTtvQ0FDbEIsS0FBSyxFQUFFLEtBQUssQ0FBQyxPQUFPO2lDQUN2QixDQUFDO2dDQUNGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7NEJBQ3BFLENBQUM7d0JBQ0wsQ0FBQzs2QkFBTSxDQUFDOzRCQUNKLE1BQU0sQ0FBQyxLQUFLLENBQUMsbURBQW1ELENBQUMsQ0FBQzt3QkFDdEUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxrQkFBa0IsRUFBRSxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLHlDQUF5QyxDQUFDLENBQUM7d0JBRXZELHlEQUF5RDt3QkFDekQsTUFBTSxTQUFTLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQzt3QkFDakMsTUFBTSxRQUFRLEdBQUcsT0FBTyxDQUFDLEtBQUssSUFBSSxFQUFFLENBQUM7d0JBQ3JDLE1BQU0sTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLENBQUM7d0JBRTNCLDJFQUEyRTt3QkFDM0UsSUFBSSxDQUFDOzRCQUVELE1BQU0sWUFBWSxHQUFHLHNCQUFzQixDQUFDLE1BQU0sRUFBRSxRQUFRLENBQUMsQ0FBQzs0QkFDOUQsTUFBTSxDQUFDLElBQUksQ0FBQyx1REFBdUQsWUFBWSxFQUFFLENBQUMsQ0FBQzs0QkFFbkYsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsU0FBUyxHQUFHLENBQUMsQ0FBQzs0QkFFNUQsSUFBSSxXQUFXLEdBQWtCLElBQUksQ0FBQzs0QkFFdEMsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO2dDQUN0QixnQkFBZ0I7Z0NBQ2hCLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFFBQVEsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixTQUFTLEdBQUcsQ0FBQyxDQUFDO2dDQUNyRixNQUFNLGFBQWEsR0FBRyxrQkFBa0IsRUFBRSxDQUFDLEtBQUssQ0FBQztvQ0FDN0MsR0FBRyxJQUFJO29DQUNQLE1BQU0sRUFBRSxTQUFTO29DQUNqQixPQUFPLEVBQUUsUUFBUTtvQ0FDakIsR0FBRyxFQUFFLFlBQVksQ0FBQyxtQkFBbUI7aUNBQ3hDLENBQUMsQ0FBQztnQ0FDSCxXQUFXLEdBQUcsTUFBTSxTQUFTLENBQUMsU0FBUyxFQUFFLFFBQVEsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDdEUsQ0FBQztpQ0FBTSxDQUFDO2dDQUNKLGlCQUFpQjtnQ0FDakIsTUFBTSxDQUFDLElBQUksQ0FBQyxnQ0FBZ0MsU0FBUyxHQUFHLENBQUMsQ0FBQztnQ0FDMUQsTUFBTSxZQUFZLEdBQUcsRUFBRSxHQUFHLElBQUksRUFBRSxDQUFDO2dDQUNqQyxPQUFPLFlBQVksQ0FBQyxPQUFPLENBQUM7Z0NBQzVCLE1BQU0sYUFBYSxHQUFHLGtCQUFrQixFQUFFLENBQUMsS0FBSyxDQUFDO29DQUM3QyxHQUFHLFlBQVk7b0NBQ2YsTUFBTSxFQUFFLFNBQVM7b0NBQ2pCLEdBQUcsRUFBRSxZQUFZLENBQUMsbUJBQW1CO2lDQUN4QyxDQUFDLENBQUM7Z0NBQ0gsV0FBVyxHQUFHLE1BQU0sV0FBVyxDQUFDLFNBQVMsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDOUQsQ0FBQzs0QkFFRCxJQUFJLFdBQVcsRUFBRSxDQUFDO2dDQUNkLEtBQUssQ0FBQyxZQUFZLEVBQUUsV0FBVyxDQUFDLENBQUM7Z0NBQ2pDLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFlBQVksRUFBRSxDQUFDLENBQUM7Z0NBRWpELHVEQUF1RDtnQ0FDdkQsTUFBTSxZQUFZLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztnQ0FFcEQsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSwyQkFBMkI7b0NBQ2hDLE1BQU0sRUFBRSxZQUFZO29DQUNwQixRQUFRLEVBQUUsV0FBVztvQ0FDckIsUUFBUSxFQUFFLFlBQVk7aUNBQ3pCLENBQUM7Z0NBRUYsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDaEUsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsSUFBSSxDQUFDLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDLENBQUM7NEJBQ2pGLENBQUM7aUNBQU0sQ0FBQztnQ0FDSixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixDQUFDLENBQUM7Z0NBRTNDLHlCQUF5QjtnQ0FDekIsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSxrQkFBa0I7b0NBQ3ZCLEtBQUssRUFBRSwwQkFBMEI7aUNBQ3BDLENBQUM7Z0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzs0QkFDcEUsQ0FBQzt3QkFDTCxDQUFDO3dCQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7NEJBQ2IsTUFBTSxZQUFZLEdBQUcsS0FBSyxZQUFZLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDOzRCQUM1RSxNQUFNLFVBQVUsR0FBRyxLQUFLLFlBQVksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxTQUFTLENBQUM7NEJBRXBFLE9BQU8sQ0FBQyxHQUFHLENBQUMsc0JBQXNCLEVBQUUsS0FBSyxFQUFDLFlBQVksQ0FBQyxDQUFDOzRCQUV4RCxNQUFNLENBQUMsS0FBSyxDQUFDLHFCQUFxQixFQUFFO2dDQUNoQyxPQUFPLEVBQUUsWUFBWTtnQ0FDckIsS0FBSyxFQUFFLFVBQVU7Z0NBQ2pCLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO2dDQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO2dDQUNoQyxLQUFLLEVBQUUsUUFBUSxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUM7NkJBQzlDLENBQUMsQ0FBQzs0QkFFSCxrQ0FBa0M7NEJBQ2xDLE1BQU0sYUFBYSxHQUFHO2dDQUNsQixHQUFHLEVBQUUsa0JBQWtCO2dDQUN2QixLQUFLLEVBQUUsWUFBWTtnQ0FDbkIsT0FBTyxFQUFFO29DQUNMLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO29DQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO29DQUNoQyxTQUFTLEVBQUUsSUFBSSxJQUFJLEVBQUUsQ0FBQyxXQUFXLEVBQUU7aUNBQ3RDOzZCQUNKLENBQUM7NEJBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzt3QkFDcEUsQ0FBQztvQkFDTCxDQUFDO2dCQUNMLENBQUM7Z0JBQUMsT0FBTyxDQUFDLEVBQUUsQ0FBQztvQkFDVCw0Q0FBNEM7b0JBQzVDLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDO29CQUN2RCxNQUFNLElBQUksSUFBSSxHQUFHLElBQUksQ0FBQztnQkFDMUIsQ0FBQztZQUNMLENBQUM7UUFDTCxDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFO1lBQ3BDLE1BQU0sS0FBSyxHQUFHLElBQUksQ0FBQyxRQUFRLEVBQUUsQ0FBQztZQUM5QixNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBRTVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNwQyxJQUFJLFVBQVUsQ0FBQyxLQUFLLElBQUksVUFBVSxDQUFDLE9BQU8sRUFBRSxDQUFDO3dCQUN6QyxxQ0FBcUM7d0JBRXJDLGdDQUFnQzt3QkFDaEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLG1DQUFtQzs0QkFDMUQsVUFBVSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN0RSxPQUFPLENBQUMsd0JBQXdCO3dCQUNwQyxDQUFDO3dCQUVELHdDQUF3Qzt3QkFDeEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLHdCQUF3QixJQUFJLFVBQVUsQ0FBQyxJQUFJLEVBQUUsT0FBTyxFQUFFLENBQUM7NEJBQzlFLElBQUksQ0FBQztnQ0FDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLFVBQVUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3BELElBQUksT0FBTyxDQUFDLEdBQUcsRUFBRSxDQUFDO29DQUNkLE1BQU0sQ0FBQyxJQUFJLENBQUMsZ0JBQWdCLE9BQU8sQ0FBQyxHQUFHLEVBQUUsRUFBRTt3Q0FDdkMsTUFBTSxFQUFFLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLElBQUksT0FBTyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sQ0FBQyxNQUFNLENBQUMsTUFBTSxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDckgsR0FBRyxFQUFFLE9BQU8sQ0FBQyxHQUFHO3dDQUNoQixLQUFLLEVBQUUsT0FBTyxDQUFDLEtBQUssRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsT0FBTyxDQUFDLEtBQUssQ0FBQyxNQUFNLFFBQVEsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDMUUsU0FBUyxFQUFFLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTTtxQ0FDOUIsQ0FBQyxDQUFDO29DQUNILE9BQU87Z0NBQ1gsQ0FBQzs0QkFDTCxDQUFDOzRCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7Z0NBQ1Qsa0NBQWtDOzRCQUN0QyxDQUFDO3dCQUNMLENBQUM7d0JBRUQsUUFBUSxVQUFVLENBQUMsS0FBSyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7NEJBQ3JDLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVixLQUFLLE1BQU07Z0NBQ1AsTUFBTSxDQUFDLElBQUksQ0FBQyxNQUFNLFVBQVUsQ0FBQyxPQUFPLEVBQUUsRUFBRSxVQUFVLENBQUMsSUFBSSxDQUFDLENBQUM7Z0NBQ3pELE1BQU07NEJBQ1YsS0FBSyxNQUFNO2dDQUNQLE1BQU0sQ0FBQyxJQUFJLENBQUMsTUFBTSxVQUFVLENBQUMsT0FBTyxFQUFFLEVBQUUsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO2dDQUN6RCxNQUFNOzRCQUNWLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVjtnQ0FDSSxNQUFNLENBQUMsSUFBSSxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDakUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLENBQUM7d0JBQ0oseURBQXlEO3dCQUN6RCxNQUFNLENBQUMsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDNUIsQ0FBQztnQkFDTCxDQUFDO2dCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7b0JBQ1Qsa0VBQWtFO29CQUNsRSxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQzt3QkFDOUIsbUNBQW1DO3dCQUNuQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsa0NBQWtDLENBQUM7NEJBQ2pELElBQUksQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN4RCxPQUFPLENBQUMsYUFBYTt3QkFDekIsQ0FBQzt3QkFDRCx3REFBd0Q7d0JBQ3hELElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsc0JBQXNCLENBQUMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxFQUFFLENBQUM7NEJBQ3pHLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsbUJBQW1CLEVBQUUsRUFBRSxDQUFDLENBQUMsT0FBTyxDQUFDLFVBQVUsRUFBRSxFQUFFLENBQUMsQ0FBQzs0QkFDbEYsTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsV0FBVyxDQUFDLENBQUM7d0JBQ25DLENBQUM7b0JBQ0wsQ0FBQzt5QkFBTSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDO3dCQUNyQixnQ0FBZ0M7d0JBQ2hDLE1BQU0sQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUM1QixDQUFDO2dCQUNMLENBQUM7WUFDTCxDQUFDO1lBQ0QsV0FBVyxJQUFJLEtBQUssQ0FBQztRQUN6QixDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxFQUFFLENBQUMsT0FBTyxFQUFFLENBQUMsSUFBSSxFQUFFLEVBQUU7WUFDOUIsTUFBTSxDQUFDLElBQUksQ0FBQywrQkFBK0IsRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNuRCxNQUFNLENBQUMsSUFBSSxDQUFDLGVBQWUsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUM7WUFDckQsTUFBTSxDQUFDLElBQUksQ0FBQyxlQUFlLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDO1lBRTFELElBQUksSUFBSSxLQUFLLENBQUMsRUFBRSxDQUFDO2dCQUNiLE1BQU0sYUFBYSxHQUFHLE1BQU0sQ0FBQyxJQUFJLEVBQUUsQ0FBQztnQkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQywyQkFBMkIsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxDQUFDLENBQUM7Z0JBQ3hFLFFBQVEsQ0FBQyxhQUFhLElBQUksSUFBSSxDQUFDLENBQUM7WUFDcEMsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLEtBQUssQ0FBQyw4QkFBOEIsSUFBSSxhQUFhLFdBQVcsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUNwRixDQUFDO1FBQ0wsQ0FBQyxDQUFDLENBQUM7UUFFSCxZQUFZLENBQUMsRUFBRSxDQUFDLE9BQU8sRUFBRSxDQUFDLEdBQUcsRUFBRSxFQUFFO1lBQzdCLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNoQixDQUFDLENBQUMsQ0FBQztJQUNQLENBQUMsQ0FBQyxDQUFDO0FBQ1AsQ0FBQztBQUVELE1BQU0sQ0FBQyxNQUFNLFlBQVksR0FBRyxLQUFLLEVBQUUsSUFBUyxFQUFFLEVBQUU7SUFDNUMsTUFBTSxNQUFNLEdBQUcsSUFBSSxNQUFNLENBQVUsRUFBRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVEsSUFBSSxDQUFDLEVBQUUsQ0FBQyxDQUFDO0lBRXJFLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO1FBQ1gsSUFBSSxDQUFDO1lBQ0QsTUFBTSxTQUFTLEdBQUcsTUFBTSxxQkFBcUIsQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUNwRCxJQUFJLFNBQVMsRUFBRSxDQUFDO2dCQUNaLE1BQU0sT0FBTyxHQUFHLElBQUksQ0FBQyxLQUFLLENBQUMsU0FBUyxDQUFDLENBQUM7Z0JBQ3RDLElBQUksQ0FBQyxNQUFNLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQztnQkFDN0IsSUFBSSxPQUFPLENBQUMsS0FBSyxJQUFJLE9BQU8sQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO29CQUM1QyxJQUFJLENBQUMsT0FBTyxHQUFHLE9BQU8sQ0FBQyxLQUFLLENBQUM7Z0JBQ2pDLENBQUM7Z0JBQ0QsSUFBSSxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUM7b0JBQ2QsSUFBSSxDQUFDLEdBQUcsR0FBRyxPQUFPLENBQUMsR0FBRyxDQUFDO2dCQUMzQixDQUFDO1lBQ0wsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsd0NBQXdDLENBQUMsQ0FBQztnQkFDdEQsT0FBTztZQUNYLENBQUM7UUFDTCxDQUFDO1FBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztZQUNiLE1BQU0sQ0FBQyxLQUFLLENBQUMsb0JBQW9CLEVBQUUsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDO1lBQ2xELE9BQU87UUFDWCxDQUFDO0lBQ0wsQ0FBQztJQUVELElBQUksSUFBSSxDQUFDLE9BQU8sSUFBSSxRQUFRLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7UUFDekMsSUFBSSxDQUFDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNsQyxDQUFDO0lBRUQsSUFBSSxDQUFDO1FBQ0QsTUFBTSxhQUFhLEdBQUcsa0JBQWtCLEVBQUUsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDdkQsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsR0FBRyxJQUFJLEVBQUUsR0FBRyxhQUFhLENBQUM7UUFFaEQsTUFBTSxhQUFhLEdBQUcsTUFBTSxhQUFhLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDekQsTUFBTSxNQUFNLEdBQUcsYUFBYSxFQUFFLE9BQWlCLElBQUksRUFBRSxDQUFDO1FBRXRELElBQUksQ0FBQyxNQUFNLElBQUksQ0FBQyxPQUFPLEVBQUUsQ0FBQztZQUN0QixNQUFNLENBQUMsS0FBSyxDQUFDLHlGQUF5RixDQUFDLENBQUM7WUFDeEcsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDUCxNQUFNLENBQUMsS0FBSyxDQUFDLG9EQUFvRCxDQUFDLENBQUM7WUFDbkUsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLFdBQVcsR0FBa0IsSUFBSSxDQUFDO1FBRXRDLElBQUksT0FBTyxJQUFJLE9BQU8sQ0FBQyxPQUFPLENBQUMsSUFBSSxPQUFPLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1lBQ3BELGdCQUFnQjtZQUNoQixLQUFLLE1BQU0sU0FBUyxJQUFJLE9BQU8sRUFBRSxDQUFDO2dCQUM5QixJQUFJLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0JBQ3JCLE1BQU0sQ0FBQyxLQUFLLENBQUMsNkJBQTZCLFNBQVMsRUFBRSxDQUFDLENBQUM7b0JBQ3ZELE9BQU87Z0JBQ1gsQ0FBQztZQUNMLENBQUM7WUFDRCxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7Z0JBQ1YsTUFBTSxDQUFDLEtBQUssQ0FBQyx5Q0FBeUMsQ0FBQyxDQUFDO2dCQUN4RCxPQUFPO1lBQ1gsQ0FBQztZQUNELE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLE9BQU8sQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ2pGLFdBQVcsR0FBRyxNQUFNLFNBQVMsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLGFBQWEsQ0FBQyxDQUFDO1FBQ2xFLENBQUM7YUFBTSxJQUFJLE1BQU0sRUFBRSxDQUFDO1lBQ2hCLGlCQUFpQjtZQUNqQixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ3ZELFdBQVcsR0FBRyxNQUFNLFdBQVcsQ0FBQyxNQUFNLEVBQUUsYUFBYSxDQUFDLENBQUM7UUFDM0QsQ0FBQztRQUVELElBQUksV0FBVyxFQUFFLENBQUM7WUFDZCxNQUFNLElBQUksR0FBRyxTQUFTLENBQUMsYUFBYSxDQUFDLENBQUM7WUFDdEMsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsR0FBRyxFQUFFLGFBQWEsQ0FBQyxHQUFHLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUNwRSxLQUFLLENBQUMsT0FBTyxFQUFFLFdBQVcsQ0FBQyxDQUFDO1lBQzVCLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDOUMsQ0FBQzthQUFNLENBQUM7WUFDSixNQUFNLENBQUMsS0FBSyxDQUFDLDJCQUEyQixDQUFDLENBQUM7UUFDOUMsQ0FBQztJQUVMLENBQUM7SUFBQyxPQUFPLEtBQUssRUFBRSxDQUFDO1FBQ2IsTUFBTSxDQUFDLEtBQUssQ0FBQyw0Q0FBNEMsRUFBRSxLQUFLLENBQUMsT0FBTyxFQUFFLEtBQUssQ0FBQyxNQUFNLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO0lBQ3pHLENBQUM7QUFDTCxDQUFDLENBQUMifQ==
\ No newline at end of file
diff --git a/packages/kbot/dist-in/data/openai_models.json b/packages/kbot/dist-in/data/openai_models.json
index 30027d56..f0870d6b 100644
--- a/packages/kbot/dist-in/data/openai_models.json
+++ b/packages/kbot/dist-in/data/openai_models.json
@@ -1,5 +1,5 @@
{
- "timestamp": 1758470050446,
+ "timestamp": 1760432036753,
"models": [
{
"id": "gpt-4-0613",
@@ -20,33 +20,33 @@
"owned_by": "openai"
},
{
- "id": "gpt-audio",
+ "id": "sora-2-pro",
"object": "model",
- "created": 1756339249,
+ "created": 1759708663,
"owned_by": "system"
},
{
- "id": "gpt-5-nano",
+ "id": "gpt-audio-mini-2025-10-06",
"object": "model",
- "created": 1754426384,
+ "created": 1759512137,
"owned_by": "system"
},
{
- "id": "gpt-audio-2025-08-28",
+ "id": "gpt-realtime-mini",
"object": "model",
- "created": 1756256146,
+ "created": 1759517133,
"owned_by": "system"
},
{
- "id": "gpt-realtime",
+ "id": "gpt-realtime-mini-2025-10-06",
"object": "model",
- "created": 1756271701,
+ "created": 1759517175,
"owned_by": "system"
},
{
- "id": "gpt-realtime-2025-08-28",
+ "id": "sora-2",
"object": "model",
- "created": 1756271773,
+ "created": 1759708615,
"owned_by": "system"
},
{
@@ -493,6 +493,66 @@
"created": 1754426303,
"owned_by": "system"
},
+ {
+ "id": "gpt-5-nano",
+ "object": "model",
+ "created": 1754426384,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-audio-2025-08-28",
+ "object": "model",
+ "created": 1756256146,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-realtime",
+ "object": "model",
+ "created": 1756271701,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-realtime-2025-08-28",
+ "object": "model",
+ "created": 1756271773,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-audio",
+ "object": "model",
+ "created": 1756339249,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-5-codex",
+ "object": "model",
+ "created": 1757527818,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-image-1-mini",
+ "object": "model",
+ "created": 1758845821,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-5-pro-2025-10-06",
+ "object": "model",
+ "created": 1759469707,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-5-pro",
+ "object": "model",
+ "created": 1759469822,
+ "owned_by": "system"
+ },
+ {
+ "id": "gpt-audio-mini",
+ "object": "model",
+ "created": 1759512027,
+ "owned_by": "system"
+ },
{
"id": "gpt-3.5-turbo-16k",
"object": "model",
diff --git a/packages/kbot/dist-in/data/openrouter_models.json b/packages/kbot/dist-in/data/openrouter_models.json
index f063ea98..73d129b6 100644
--- a/packages/kbot/dist-in/data/openrouter_models.json
+++ b/packages/kbot/dist-in/data/openrouter_models.json
@@ -1,13 +1,1095 @@
{
- "timestamp": 1758470050775,
+ "timestamp": 1760432037245,
"models": [
{
- "id": "x-ai/grok-4-fast:free",
+ "id": "inclusionai/ling-1t",
+ "canonical_slug": "inclusionai/ling-1t",
+ "hugging_face_id": "inclusionAI/Ling-1T",
+ "name": "inclusionAI: Ling-1T",
+ "created": 1760316076,
+ "description": "Ling-1T is a trillion-parameter open-weight large language model developed by inclusionAI and released under the MIT license. It represents the first flagship non-thinking model in the Ling 2.0 series, built around a sparse-activation architecture with roughly 50 billion active parameters per token. The model supports up to 128 K tokens of context and emphasizes efficient reasoning through an “Evolutionary Chain-of-Thought (Evo-CoT)” training strategy.\n\nPre-trained on more than 20 trillion reasoning-dense tokens, Ling-1T achieves strong results across code generation, mathematics, and logical reasoning benchmarks while maintaining high inference efficiency. It employs FP8 mixed-precision training, MoE routing with QK normalization, and MTP layers for compositional reasoning stability. The model also introduces LPO (Linguistics-unit Policy Optimization) for post-training alignment, enhancing sentence-level semantic control.\n\nLing-1T can perform complex text generation, multilingual reasoning, and front-end code synthesis with a focus on both functionality and aesthetics.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.000001",
+ "completion": "0.000003",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.7,
+ "top_p": 0.8,
+ "frequency_penalty": 1.05
+ }
+ },
+ {
+ "id": "nvidia/llama-3.3-nemotron-super-49b-v1.5",
+ "canonical_slug": "nvidia/llama-3.3-nemotron-super-49b-v1.5",
+ "hugging_face_id": "nvidia/Llama-3_3-Nemotron-Super-49B-v1_5",
+ "name": "NVIDIA: Llama 3.3 Nemotron Super 49B V1.5",
+ "created": 1760101395,
+ "description": "Llama-3.3-Nemotron-Super-49B-v1.5 is a 49B-parameter, English-centric reasoning/chat model derived from Meta’s Llama-3.3-70B-Instruct with a 128K context. It’s post-trained for agentic workflows (RAG, tool calling) via SFT across math, code, science, and multi-turn chat, followed by multiple RL stages; Reward-aware Preference Optimization (RPO) for alignment, RL with Verifiable Rewards (RLVR) for step-wise reasoning, and iterative DPO to refine tool-use behavior. A distillation-driven Neural Architecture Search (“Puzzle”) replaces some attention blocks and varies FFN widths to shrink memory footprint and improve throughput, enabling single-GPU (H100/H200) deployment while preserving instruction following and CoT quality.\n\nIn internal evaluations (NeMo-Skills, up to 16 runs, temp = 0.6, top_p = 0.95), the model reports strong reasoning/coding results, e.g., MATH500 pass@1 = 97.4, AIME-2024 = 87.5, AIME-2025 = 82.71, GPQA = 71.97, LiveCodeBench (24.10–25.02) = 73.58, and MMLU-Pro (CoT) = 79.53. The model targets practical inference efficiency (high tokens/s, reduced VRAM) with Transformers/vLLM support and explicit “reasoning on/off” modes (chat-first defaults, greedy recommended when disabled). Suitable for building agents, assistants, and long-context retrieval systems where balanced accuracy-to-cost and reliable tool use matter.\n",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000001",
+ "completion": "0.0000004",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": null
+ },
+ {
+ "id": "baidu/ernie-4.5-21b-a3b-thinking",
+ "canonical_slug": "baidu/ernie-4.5-21b-a3b-thinking",
+ "hugging_face_id": "baidu/ERNIE-4.5-21B-A3B-Thinking",
+ "name": "Baidu: ERNIE 4.5 21B A3B Thinking",
+ "created": 1760048887,
+ "description": "ERNIE-4.5-21B-A3B-Thinking is Baidu's upgraded lightweight MoE model, refined to boost reasoning depth and quality for top-tier performance in logical puzzles, math, science, coding, text generation, and expert-level academic benchmarks.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000007",
+ "completion": "0.00000028",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 65536,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "max_tokens",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.6,
+ "top_p": 0.95,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "google/gemini-2.5-flash-image",
+ "canonical_slug": "google/gemini-2.5-flash-image",
+ "hugging_face_id": "",
+ "name": "Google: Gemini 2.5 Flash Image (Nano Banana)",
+ "created": 1759870431,
+ "description": "Gemini 2.5 Flash Image, a.k.a. \"Nano Banana,\" is now generally available. It is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations. Aspect ratios can be controlled with the [image_config API Parameter](https://openrouter.ai/docs/features/multimodal/image-generation#image-aspect-ratio-configuration)",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text+image->text+image",
+ "input_modalities": [
+ "image",
+ "text"
+ ],
+ "output_modalities": [
+ "image",
+ "text"
+ ],
+ "tokenizer": "Gemini",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000003",
+ "completion": "0.0000025",
+ "request": "0",
+ "image": "0.001238",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": 8192,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "max_tokens",
+ "response_format",
+ "seed",
+ "structured_outputs",
+ "temperature",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "qwen/qwen3-vl-30b-a3b-thinking",
+ "canonical_slug": "qwen/qwen3-vl-30b-a3b-thinking",
+ "hugging_face_id": "Qwen/Qwen3-VL-30B-A3B-Thinking",
+ "name": "Qwen: Qwen3 VL 30B A3B Thinking",
+ "created": 1759794479,
+ "description": "Qwen3-VL-30B-A3B-Thinking is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Thinking variant enhances reasoning in STEM, math, and complex tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.",
+ "context_length": 262144,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000029",
+ "completion": "0.000001",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 262144,
+ "max_completion_tokens": 262144,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.8,
+ "top_p": 0.95
+ }
+ },
+ {
+ "id": "qwen/qwen3-vl-30b-a3b-instruct",
+ "canonical_slug": "qwen/qwen3-vl-30b-a3b-instruct",
+ "hugging_face_id": "Qwen/Qwen3-VL-30B-A3B-Instruct",
+ "name": "Qwen: Qwen3 VL 30B A3B Instruct",
+ "created": 1759794476,
+ "description": "Qwen3-VL-30B-A3B-Instruct is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Instruct variant optimizes instruction-following for general multimodal tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.",
+ "context_length": 262144,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000029",
+ "completion": "0.000001",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 262144,
+ "max_completion_tokens": 262144,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.7,
+ "top_p": 0.8
+ }
+ },
+ {
+ "id": "openai/gpt-5-pro",
+ "canonical_slug": "openai/gpt-5-pro-2025-10-06",
+ "hugging_face_id": "",
+ "name": "OpenAI: GPT-5 Pro",
+ "created": 1759776663,
+ "description": "GPT-5 Pro is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like \"think hard about this.\" Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.",
+ "context_length": 400000,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "image",
+ "text",
+ "file"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "GPT",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.000015",
+ "completion": "0.00012",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 400000,
+ "max_completion_tokens": 128000,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "include_reasoning",
+ "max_tokens",
+ "reasoning",
+ "response_format",
+ "seed",
+ "structured_outputs",
+ "tool_choice",
+ "tools"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "z-ai/glm-4.6",
+ "canonical_slug": "z-ai/glm-4.6",
+ "hugging_face_id": "",
+ "name": "Z.AI: GLM 4.6",
+ "created": 1759235576,
+ "description": "Compared with GLM-4.5, this generation brings several key improvements:\n\nLonger context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks.\nSuperior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages.\nAdvanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability.\nMore capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks.\nRefined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.",
+ "context_length": 202752,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000005",
+ "completion": "0.00000175",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 202752,
+ "max_completion_tokens": 202752,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_a",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.6,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "anthropic/claude-sonnet-4.5",
+ "canonical_slug": "anthropic/claude-4.5-sonnet-20250929",
+ "hugging_face_id": "",
+ "name": "Anthropic: Claude Sonnet 4.5",
+ "created": 1759161676,
+ "description": "Claude Sonnet 4.5 is Anthropic’s most advanced Sonnet model to date, optimized for real-world agents and coding workflows. It delivers state-of-the-art performance on coding benchmarks such as SWE-bench Verified, with improvements across system design, code security, and specification adherence. The model is designed for extended autonomous operation, maintaining task continuity across sessions and providing fact-based progress tracking.\n\nSonnet 4.5 also introduces stronger agentic capabilities, including improved tool orchestration, speculative parallel execution, and more efficient context and memory management. With enhanced context tracking and awareness of token usage across tool calls, it is particularly well-suited for multi-context and long-running workflows. Use cases span software engineering, cybersecurity, financial analysis, research agents, and other domains requiring sustained reasoning and tool use.",
+ "context_length": 1000000,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image",
+ "file"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Claude",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.000003",
+ "completion": "0.000015",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 1000000,
+ "max_completion_tokens": 64000,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "include_reasoning",
+ "max_tokens",
+ "reasoning",
+ "stop",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 1,
+ "top_p": 1,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "deepseek/deepseek-v3.2-exp",
+ "canonical_slug": "deepseek/deepseek-v3.2-exp",
+ "hugging_face_id": "deepseek-ai/DeepSeek-V3.2-Exp",
+ "name": "DeepSeek: DeepSeek V3.2 Exp",
+ "created": 1759150481,
+ "description": "DeepSeek-V3.2-Exp is an experimental large language model released by DeepSeek as an intermediate step between V3.1 and future architectures. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism designed to improve training and inference efficiency in long-context scenarios while maintaining output quality. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThe model was trained under conditions aligned with V3.1-Terminus to enable direct comparison. Benchmarking shows performance roughly on par with V3.1 across reasoning, coding, and agentic tool-use tasks, with minor tradeoffs and gains depending on the domain. This release focuses on validating architectural optimizations for extended context lengths rather than advancing raw task accuracy, making it primarily a research-oriented model for exploring efficient transformer designs.",
+ "context_length": 163840,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "DeepSeek",
+ "instruct_type": "deepseek-v3.1"
+ },
+ "pricing": {
+ "prompt": "0.00000027",
+ "completion": "0.0000004",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 163840,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.6,
+ "top_p": 0.95,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "thedrummer/cydonia-24b-v4.1",
+ "canonical_slug": "thedrummer/cydonia-24b-v4.1",
+ "hugging_face_id": "thedrummer/cydonia-24b-v4.1",
+ "name": "TheDrummer: Cydonia 24B V4.1",
+ "created": 1758931878,
+ "description": "Uncensored and creative writing model based on Mistral Small 3.2 24B with good recall, prompt adherence, and intelligence.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000003",
+ "completion": "0.0000005",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "relace/relace-apply-3",
+ "canonical_slug": "relace/relace-apply-3",
+ "hugging_face_id": "",
+ "name": "Relace: Relace Apply 3",
+ "created": 1758891572,
+ "description": "Relace Apply 3 is a specialized code-patching LLM that merges AI-suggested edits straight into your source files. It can apply updates from GPT-4o, Claude, and others into your files at 7,500 tokens/sec on average.\n\nThe model requires the prompt to be in the following format: \n{instruction}\n{initial_code}\n{edit_snippet}\n\nZero Data Retention is enabled for Relace. Learn more about this model in their [documentation](https://docs.relace.ai/api-reference/instant-apply/apply)",
+ "context_length": 256000,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000085",
+ "completion": "0.00000125",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 256000,
+ "max_completion_tokens": 128000,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "max_tokens",
+ "seed",
+ "stop"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "google/gemini-2.5-flash-preview-09-2025",
+ "canonical_slug": "google/gemini-2.5-flash-preview-09-2025",
+ "hugging_face_id": "",
+ "name": "Google: Gemini 2.5 Flash Preview 09-2025",
+ "created": 1758820178,
+ "description": "Gemini 2.5 Flash Preview September 2025 Checkpoint is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in \"thinking\" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. \n\nAdditionally, Gemini 2.5 Flash is configurable through the \"max tokens for reasoning\" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).",
+ "context_length": 1048576,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "image",
+ "file",
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Gemini",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000003",
+ "completion": "0.0000025",
+ "request": "0",
+ "image": "0.001238",
+ "web_search": "0",
+ "internal_reasoning": "0",
+ "input_cache_read": "0.000000075",
+ "input_cache_write": "0.0000003833"
+ },
+ "top_provider": {
+ "context_length": 1048576,
+ "max_completion_tokens": 65536,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "include_reasoning",
+ "max_tokens",
+ "reasoning",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "google/gemini-2.5-flash-lite-preview-09-2025",
+ "canonical_slug": "google/gemini-2.5-flash-lite-preview-09-2025",
+ "hugging_face_id": "",
+ "name": "Google: Gemini 2.5 Flash Lite Preview 09-2025",
+ "created": 1758819686,
+ "description": "Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, \"thinking\" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the [Reasoning API parameter](https://openrouter.ai/docs/use-cases/reasoning-tokens) to selectively trade off cost for intelligence. ",
+ "context_length": 1048576,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "file",
+ "image",
+ "text",
+ "audio"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Gemini",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000001",
+ "completion": "0.0000004",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 1048576,
+ "max_completion_tokens": 65536,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "include_reasoning",
+ "max_tokens",
+ "reasoning",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "qwen/qwen3-vl-235b-a22b-thinking",
+ "canonical_slug": "qwen/qwen3-vl-235b-a22b-thinking",
+ "hugging_face_id": "Qwen/Qwen3-VL-235B-A22B-Thinking",
+ "name": "Qwen: Qwen3 VL 235B A22B Thinking",
+ "created": 1758668690,
+ "description": "Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning.\n\nBeyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.",
+ "context_length": 262144,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000045",
+ "completion": "0.0000035",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 262144,
+ "max_completion_tokens": 262144,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.8,
+ "top_p": 0.95,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "qwen/qwen3-vl-235b-a22b-instruct",
+ "canonical_slug": "qwen/qwen3-vl-235b-a22b-instruct",
+ "hugging_face_id": "Qwen/Qwen3-VL-235B-A22B-Instruct",
+ "name": "Qwen: Qwen3 VL 235B A22B Instruct",
+ "created": 1758668687,
+ "description": "Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning.\n\nBeyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000003",
+ "completion": "0.0000012",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.7,
+ "top_p": 0.8,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "qwen/qwen3-max",
+ "canonical_slug": "qwen/qwen3-max",
+ "hugging_face_id": "",
+ "name": "Qwen: Qwen3 Max",
+ "created": 1758662808,
+ "description": "Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.",
+ "context_length": 256000,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000012",
+ "completion": "0.000006",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0",
+ "input_cache_read": "0.00000024"
+ },
+ "top_provider": {
+ "context_length": 256000,
+ "max_completion_tokens": 32768,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_p"
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "qwen/qwen3-coder-plus",
+ "canonical_slug": "qwen/qwen3-coder-plus",
+ "hugging_face_id": "",
+ "name": "Qwen: Qwen3 Coder Plus",
+ "created": 1758662707,
+ "description": "Qwen3 Coder Plus is Alibaba's proprietary version of the Open Source Qwen3 Coder 480B A35B. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.",
+ "context_length": 128000,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.000001",
+ "completion": "0.000005",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0",
+ "input_cache_read": "0.0000001"
+ },
+ "top_provider": {
+ "context_length": 128000,
+ "max_completion_tokens": 65536,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "openai/gpt-5-codex",
+ "canonical_slug": "openai/gpt-5-codex",
+ "hugging_face_id": "",
+ "name": "OpenAI: GPT-5 Codex",
+ "created": 1758643403,
+ "description": "GPT-5-Codex is a specialized version of GPT-5 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level)\n\nCodex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.",
+ "context_length": 400000,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "GPT",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000125",
+ "completion": "0.00001",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0",
+ "input_cache_read": "0.000000125"
+ },
+ "top_provider": {
+ "context_length": 400000,
+ "max_completion_tokens": 128000,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "include_reasoning",
+ "max_tokens",
+ "reasoning",
+ "response_format",
+ "seed",
+ "structured_outputs",
+ "tool_choice",
+ "tools"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "deepseek/deepseek-v3.1-terminus",
+ "canonical_slug": "deepseek/deepseek-v3.1-terminus",
+ "hugging_face_id": "deepseek-ai/DeepSeek-V3.1-Terminus",
+ "name": "DeepSeek: DeepSeek V3.1 Terminus",
+ "created": 1758548275,
+ "description": "DeepSeek-V3.1 Terminus is an update to [DeepSeek V3.1](/deepseek/deepseek-chat-v3.1) that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThe model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. ",
+ "context_length": 163840,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "DeepSeek",
+ "instruct_type": "deepseek-v3.1"
+ },
+ "pricing": {
+ "prompt": "0.00000023",
+ "completion": "0.0000009",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 163840,
+ "max_completion_tokens": 163840,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "x-ai/grok-4-fast",
"canonical_slug": "x-ai/grok-4-fast",
"hugging_face_id": "",
- "name": "xAI: Grok 4 Fast (free)",
+ "name": "xAI: Grok 4 Fast",
"created": 1758240090,
- "description": "Grok 4 Fast is xAI's latest multimodal model with SOTA cost-efficiency and a 2M token context window. It comes in two flavors: non-reasoning and reasoning. Read more about the model on xAI's [news post](http://x.ai/news/grok-4-fast). Reasoning can be enabled using the `reasoning` `enabled` parameter in the API. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#controlling-reasoning-tokens)\n\nPrompts and completions may be used by xAI or OpenRouter to improve future models.",
+ "description": "Grok 4 Fast is xAI's latest multimodal model with SOTA cost-efficiency and a 2M token context window. It comes in two flavors: non-reasoning and reasoning. Read more about the model on xAI's [news post](http://x.ai/news/grok-4-fast). Reasoning can be enabled using the `reasoning` `enabled` parameter in the API. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#controlling-reasoning-tokens)\n\nPrompts and completions on Grok 4 Fast Free may be used by xAI or OpenRouter to improve future models.",
"context_length": 2000000,
"architecture": {
"modality": "text+image->text",
@@ -22,12 +1104,13 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0",
- "completion": "0",
+ "prompt": "0.0000002",
+ "completion": "0.0000005",
"request": "0",
"image": "0",
"web_search": "0",
- "internal_reasoning": "0"
+ "internal_reasoning": "0",
+ "input_cache_read": "0.00000005"
},
"top_provider": {
"context_length": 2000000,
@@ -48,7 +1131,70 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
+ },
+ {
+ "id": "alibaba/tongyi-deepresearch-30b-a3b:free",
+ "canonical_slug": "alibaba/tongyi-deepresearch-30b-a3b",
+ "hugging_face_id": "Alibaba-NLP/Tongyi-DeepResearch-30B-A3B",
+ "name": "Tongyi DeepResearch 30B A3B (free)",
+ "created": 1758210804,
+ "description": "Tongyi DeepResearch is an agentic large language model developed by Tongyi Lab, with 30 billion total parameters activating only 3 billion per token. It's optimized for long-horizon, deep information-seeking tasks and delivers state-of-the-art performance on benchmarks like Humanity's Last Exam, BrowserComp, BrowserComp-ZH, WebWalkerQA, GAIA, xbench-DeepSearch, and FRAMES. This makes it superior for complex agentic search, reasoning, and multi-step problem-solving compared to prior models.\n\nThe model includes a fully automated synthetic data pipeline for scalable pre-training, fine-tuning, and reinforcement learning. It uses large-scale continual pre-training on diverse agentic data to boost reasoning and stay fresh. It also features end-to-end on-policy RL with a customized Group Relative Policy Optimization, including token-level gradients and negative sample filtering for stable training. The model supports ReAct for core ability checks and an IterResearch-based 'Heavy' mode for max performance through test-time scaling. It's ideal for advanced research agents, tool use, and heavy inference workflows.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0",
+ "completion": "0",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "alibaba/tongyi-deepresearch-30b-a3b",
@@ -71,7 +1217,7 @@
},
"pricing": {
"prompt": "0.00000009",
- "completion": "0.00000045",
+ "completion": "0.0000004",
"request": "0",
"image": "0",
"web_search": "0",
@@ -84,16 +1230,28 @@
},
"per_request_limits": null,
"supported_parameters": [
+ "frequency_penalty",
"include_reasoning",
"max_tokens",
+ "min_p",
+ "presence_penalty",
"reasoning",
+ "repetition_penalty",
"response_format",
+ "seed",
+ "stop",
"structured_outputs",
"temperature",
"tool_choice",
"tools",
+ "top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "qwen/qwen3-coder-flash",
@@ -138,53 +1296,12 @@
"tool_choice",
"tools",
"top_p"
- ]
- },
- {
- "id": "qwen/qwen3-coder-plus",
- "canonical_slug": "qwen/qwen3-coder-plus",
- "hugging_face_id": "",
- "name": "Qwen: Qwen3 Coder Plus",
- "created": 1758115194,
- "description": "Qwen3 Coder Plus is Alibaba's proprietary version of the Open Source Qwen3 Coder 480B A35B. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen3",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.000001",
- "completion": "0.000005",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0",
- "input_cache_read": "0.0000001"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 65536,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "arcee-ai/afm-4.5b",
@@ -206,8 +1323,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000001",
- "completion": "0.0000004",
+ "prompt": "0.000000048",
+ "completion": "0.00000015",
"request": "0",
"image": "0",
"web_search": "0",
@@ -232,7 +1349,12 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "opengvlab/internvl3-78b",
@@ -255,8 +1377,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000003",
- "completion": "0.00000013",
+ "prompt": "0.00000007",
+ "completion": "0.00000026",
"request": "0",
"image": "0",
"web_search": "0",
@@ -264,7 +1386,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -284,7 +1406,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-next-80b-a3b-thinking",
@@ -306,8 +1429,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000001",
- "completion": "0.0000008",
+ "prompt": "0.00000014",
+ "completion": "0.0000012",
"request": "0",
"image": "0",
"web_search": "0",
@@ -339,7 +1462,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-next-80b-a3b-instruct",
@@ -370,7 +1494,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -392,7 +1516,62 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "meituan/longcat-flash-chat:free",
+ "canonical_slug": "meituan/longcat-flash-chat",
+ "hugging_face_id": "meituan-longcat/LongCat-Flash-Chat",
+ "name": "Meituan: LongCat Flash Chat (free)",
+ "created": 1757427658,
+ "description": "LongCat-Flash-Chat is a large-scale Mixture-of-Experts (MoE) model with 560B total parameters, of which 18.6B–31.3B (≈27B on average) are dynamically activated per input. It introduces a shortcut-connected MoE design to reduce communication overhead and achieve high throughput while maintaining training stability through advanced scaling strategies such as hyperparameter transfer, deterministic computation, and multi-stage optimization.\n\nThis release, LongCat-Flash-Chat, is a non-thinking foundation model optimized for conversational and agentic tasks. It supports long context windows up to 128K tokens and shows competitive performance across reasoning, coding, instruction following, and domain benchmarks, with particular strengths in tool use and complex multi-step interactions.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0",
+ "completion": "0",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "meituan/longcat-flash-chat",
@@ -414,8 +1593,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000012",
- "completion": "0.0000006",
+ "prompt": "0.00000015",
+ "completion": "0.00000075",
"request": "0",
"image": "0",
"web_search": "0",
@@ -423,27 +1602,16 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
"max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
"temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-plus-2025-07-28",
@@ -488,7 +1656,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-plus-2025-07-28:thinking",
@@ -535,7 +1704,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nvidia/nemotron-nano-9b-v2:free",
@@ -577,7 +1747,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nvidia/nemotron-nano-9b-v2",
@@ -615,6 +1786,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
+ "logit_bias",
"max_tokens",
"min_p",
"presence_penalty",
@@ -628,52 +1800,8 @@
"tools",
"top_k",
"top_p"
- ]
- },
- {
- "id": "qwen/qwen3-max",
- "canonical_slug": "qwen/qwen3-max",
- "hugging_face_id": "",
- "name": "Qwen: Qwen3 Max",
- "created": 1757076567,
- "description": "Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.",
- "context_length": 256000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen3",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000012",
- "completion": "0.000006",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0",
- "input_cache_read": "0.00000024"
- },
- "top_provider": {
- "context_length": 256000,
- "max_completion_tokens": 32768,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "moonshotai/kimi-k2-0905",
@@ -695,8 +1823,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000038",
- "completion": "0.00000152",
+ "prompt": "0.00000039",
+ "completion": "0.0000019",
"request": "0",
"image": "0",
"web_search": "0",
@@ -704,7 +1832,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -726,58 +1854,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "bytedance/seed-oss-36b-instruct",
- "canonical_slug": "bytedance/seed-oss-36b-instruct",
- "hugging_face_id": "ByteDance-Seed/Seed-OSS-36B-Instruct",
- "name": "ByteDance: Seed OSS 36B Instruct",
- "created": 1756834704,
- "description": "Seed-OSS-36B-Instruct is a 36B-parameter instruction-tuned reasoning language model from ByteDance’s Seed team, released under Apache-2.0. The model is optimized for general instruction following with strong performance in reasoning, mathematics, coding, tool use/agentic workflows, and multilingual tasks, and is intended for international (i18n) use cases. It is not currently possible to control the reasoning effort.",
- "context_length": 131072,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.00000016",
- "completion": "0.00000065",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 131072,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepcogito/cogito-v2-preview-llama-109b-moe",
@@ -828,7 +1906,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepcogito/cogito-v2-preview-deepseek-671b",
@@ -876,7 +1955,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "stepfun-ai/step3",
@@ -923,7 +2003,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-30b-a3b-thinking-2507",
@@ -978,7 +2059,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-code-fast-1",
@@ -1028,7 +2110,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/hermes-4-70b",
@@ -1059,7 +2142,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -1081,7 +2164,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/hermes-4-405b",
@@ -1103,8 +2187,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.0000003",
+ "completion": "0.0000012",
"request": "0",
"image": "0",
"web_search": "0",
@@ -1112,7 +2196,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -1134,15 +2218,16 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.5-flash-image-preview",
"canonical_slug": "google/gemini-2.5-flash-image-preview",
"hugging_face_id": "",
- "name": "Google: Gemini 2.5 Flash Image Preview",
+ "name": "Google: Gemini 2.5 Flash Image Preview (Nano Banana)",
"created": 1756218977,
- "description": "Gemini 2.5 Flash Image Preview, AKA Nano Banana is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations.",
+ "description": "Gemini 2.5 Flash Image Preview, a.k.a. \"Nano Banana,\" is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations.",
"context_length": 32768,
"architecture": {
"modality": "text+image->text+image",
@@ -1178,7 +2263,12 @@
"structured_outputs",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "deepseek/deepseek-chat-v3.1:free",
@@ -1187,7 +2277,7 @@
"name": "DeepSeek: DeepSeek V3.1 (free)",
"created": 1755779628,
"description": "DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)\n\nThe model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. \n\nIt succeeds the [DeepSeek V3-0324](/deepseek/deepseek-chat-v3-0324) model and performs well on a variety of tasks.",
- "context_length": 163840,
+ "context_length": 163800,
"architecture": {
"modality": "text->text",
"input_modalities": [
@@ -1208,28 +2298,20 @@
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 163840,
+ "context_length": 163800,
"max_completion_tokens": null,
- "is_moderated": false
+ "is_moderated": true
},
"per_request_limits": null,
"supported_parameters": [
- "frequency_penalty",
"include_reasoning",
"max_tokens",
- "min_p",
- "presence_penalty",
"reasoning",
- "repetition_penalty",
- "response_format",
"seed",
"stop",
- "temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_p"
- ]
+ "temperature"
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-chat-v3.1",
@@ -1251,8 +2333,8 @@
"instruct_type": "deepseek-v3.1"
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.0000002",
+ "completion": "0.0000008",
"request": "0",
"image": "0",
"web_search": "0",
@@ -1260,7 +2342,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -1284,56 +2366,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "deepseek/deepseek-v3.1-base",
- "canonical_slug": "deepseek/deepseek-v3.1-base",
- "hugging_face_id": "deepseek-ai/DeepSeek-V3.1-Base",
- "name": "DeepSeek: DeepSeek V3.1 Base",
- "created": 1755727017,
- "description": "This is a base model, trained only for raw next-token prediction. Unlike instruct/chat models, it has not been fine-tuned to follow user instructions. Prompts need to be written more like training text or examples rather than simple requests (e.g., “Translate the following sentence…” instead of just “Translate this”).\n\nDeepSeek-V3.1 Base is a 671B parameter open Mixture-of-Experts (MoE) language model with 37B active parameters per forward pass and a context length of 128K tokens. Trained on 14.8T tokens using FP8 mixed precision, it achieves high training efficiency and stability, with strong performance across language, reasoning, math, and coding tasks. \n",
- "context_length": 163840,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "DeepSeek",
- "instruct_type": "none"
- },
- "pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 163840,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-audio-preview",
@@ -1385,7 +2419,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-medium-3.1",
@@ -1433,7 +2468,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "baidu/ernie-4.5-21b-a3b",
@@ -1470,9 +2508,7 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"repetition_penalty",
"seed",
@@ -1480,7 +2516,12 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.8,
+ "top_p": 0.8,
+ "frequency_penalty": null
+ }
},
{
"id": "baidu/ernie-4.5-vl-28b-a3b",
@@ -1519,9 +2560,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"reasoning",
"repetition_penalty",
@@ -1530,7 +2569,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "z-ai/glm-4.5v",
@@ -1553,7 +2593,7 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000005",
+ "prompt": "0.0000006",
"completion": "0.0000018",
"request": "0",
"image": "0",
@@ -1562,7 +2602,7 @@
},
"top_provider": {
"context_length": 65536,
- "max_completion_tokens": 65536,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
@@ -1582,7 +2622,12 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.75,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "ai21/jamba-mini-1.7",
@@ -1625,7 +2670,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "ai21/jamba-large-1.7",
@@ -1668,7 +2714,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-5-chat",
@@ -1711,7 +2758,8 @@
"response_format",
"seed",
"structured_outputs"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-5",
@@ -1735,13 +2783,13 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.000000625",
- "completion": "0.000005",
+ "prompt": "0.00000125",
+ "completion": "0.00001",
"request": "0",
"image": "0",
- "web_search": "0.005",
+ "web_search": "0.01",
"internal_reasoning": "0",
- "input_cache_read": "0.0000000625"
+ "input_cache_read": "0.000000125"
},
"top_provider": {
"context_length": 400000,
@@ -1758,7 +2806,12 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "openai/gpt-5-mini",
@@ -1805,7 +2858,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-5-nano",
@@ -1852,49 +2906,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
- },
- {
- "id": "openai/gpt-oss-120b:free",
- "canonical_slug": "openai/gpt-oss-120b",
- "hugging_face_id": "openai/gpt-oss-120b",
- "name": "OpenAI: gpt-oss-120b (free)",
- "created": 1754414231,
- "description": "gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "GPT",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "include_reasoning",
- "max_tokens",
- "reasoning",
- "seed",
- "stop",
- "temperature"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-oss-120b",
@@ -1916,8 +2929,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000005",
- "completion": "0.00000025",
+ "prompt": "0.00000004",
+ "completion": "0.0000004",
"request": "0",
"image": "0",
"web_search": "0",
@@ -1925,7 +2938,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -1949,7 +2962,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": null
},
{
"id": "openai/gpt-oss-20b:free",
@@ -1985,14 +2999,25 @@
},
"per_request_limits": null,
"supported_parameters": [
+ "frequency_penalty",
"include_reasoning",
+ "logit_bias",
+ "logprobs",
"max_tokens",
+ "min_p",
+ "presence_penalty",
"reasoning",
+ "repetition_penalty",
"response_format",
+ "seed",
+ "stop",
"structured_outputs",
"temperature",
+ "top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-oss-20b",
@@ -2015,7 +3040,7 @@
},
"pricing": {
"prompt": "0.00000003",
- "completion": "0.00000015",
+ "completion": "0.00000014",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2023,7 +3048,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": 32768,
+ "max_completion_tokens": null,
"is_moderated": false
},
"per_request_limits": null,
@@ -2047,7 +3072,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-opus-4.1",
@@ -2075,7 +3101,7 @@
"completion": "0.000075",
"request": "0",
"image": "0.024",
- "web_search": "0.01",
+ "web_search": "0",
"internal_reasoning": "0",
"input_cache_read": "0.0000015",
"input_cache_write": "0.00001875"
@@ -2083,7 +3109,7 @@
"top_provider": {
"context_length": 200000,
"max_completion_tokens": 32000,
- "is_moderated": true
+ "is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
@@ -2096,7 +3122,12 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "mistralai/codestral-2508",
@@ -2143,7 +3174,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "qwen/qwen3-coder-30b-a3b-instruct",
@@ -2165,8 +3199,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000007",
- "completion": "0.00000028",
+ "prompt": "0.00000006",
+ "completion": "0.00000025",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2174,7 +3208,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -2196,7 +3230,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-30b-a3b-instruct-2507",
@@ -2218,8 +3253,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000007",
- "completion": "0.00000028",
+ "prompt": "0.00000008",
+ "completion": "0.00000033",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2227,7 +3262,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -2249,7 +3284,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "z-ai/glm-4.5",
@@ -2271,8 +3307,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000041",
- "completion": "0.00000165",
+ "prompt": "0.00000035",
+ "completion": "0.00000155",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2280,7 +3316,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -2305,7 +3341,12 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.75,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "z-ai/glm-4.5-air:free",
@@ -2336,7 +3377,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -2350,6 +3391,7 @@
"presence_penalty",
"reasoning",
"repetition_penalty",
+ "response_format",
"seed",
"stop",
"temperature",
@@ -2358,7 +3400,12 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.75,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "z-ai/glm-4.5-air",
@@ -2394,17 +3441,29 @@
},
"per_request_limits": null,
"supported_parameters": [
+ "frequency_penalty",
"include_reasoning",
+ "logit_bias",
+ "logprobs",
"max_tokens",
+ "presence_penalty",
"reasoning",
"response_format",
"seed",
+ "stop",
"structured_outputs",
"temperature",
"tool_choice",
"tools",
+ "top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.75,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "qwen/qwen3-235b-a22b-thinking-2507",
@@ -2426,8 +3485,8 @@
"instruct_type": "qwen3"
},
"pricing": {
- "prompt": "0.0000001",
- "completion": "0.00000039",
+ "prompt": "0.00000011",
+ "completion": "0.0000006",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2435,7 +3494,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -2459,7 +3518,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "z-ai/glm-4-32b",
@@ -2500,7 +3560,12 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.75,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "qwen/qwen3-coder:free",
@@ -2551,7 +3616,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-coder",
@@ -2582,7 +3648,7 @@
},
"top_provider": {
"context_length": 262144,
- "max_completion_tokens": null,
+ "max_completion_tokens": 262144,
"is_moderated": false
},
"per_request_limits": null,
@@ -2604,7 +3670,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "bytedance/ui-tars-1.5-7b",
@@ -2652,7 +3719,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.5-flash-lite",
@@ -2704,7 +3772,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-235b-a22b-2507",
@@ -2726,8 +3795,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000001",
- "completion": "0.0000001",
+ "prompt": "0.00000008",
+ "completion": "0.00000055",
"request": "0",
"image": "0",
"web_search": "0",
@@ -2757,7 +3826,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "switchpoint/router",
@@ -2801,7 +3871,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "moonshotai/kimi-k2:free",
@@ -2833,26 +3904,16 @@
"top_provider": {
"context_length": 32768,
"max_completion_tokens": null,
- "is_moderated": false
+ "is_moderated": true
},
"per_request_limits": null,
"supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
"max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
"seed",
"stop",
- "temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ "temperature"
+ ],
+ "default_parameters": {}
},
{
"id": "moonshotai/kimi-k2",
@@ -2905,7 +3966,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thudm/glm-4.1v-9b-thinking",
@@ -2944,9 +4006,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"reasoning",
"repetition_penalty",
@@ -2955,7 +4015,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/devstral-medium",
@@ -3002,7 +4063,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/devstral-small",
@@ -3052,7 +4116,10 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "cognitivecomputations/dolphin-mistral-24b-venice-edition:free",
@@ -3097,7 +4164,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-4",
@@ -3147,7 +4215,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3n-e2b-it:free",
@@ -3191,7 +4260,8 @@
"stop",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "tencent/hunyuan-a13b-instruct:free",
@@ -3242,7 +4312,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "tencent/hunyuan-a13b-instruct",
@@ -3295,7 +4366,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "tngtech/deepseek-r1t2-chimera:free",
@@ -3346,7 +4418,60 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "tngtech/deepseek-r1t2-chimera",
+ "canonical_slug": "tngtech/deepseek-r1t2-chimera",
+ "hugging_face_id": "tngtech/DeepSeek-TNG-R1T2-Chimera",
+ "name": "TNG: DeepSeek R1T2 Chimera",
+ "created": 1751986985,
+ "description": "DeepSeek-TNG-R1T2-Chimera is the second-generation Chimera model from TNG Tech. It is a 671 B-parameter mixture-of-experts text-generation model assembled from DeepSeek-AI’s R1-0528, R1, and V3-0324 checkpoints with an Assembly-of-Experts merge. The tri-parent design yields strong reasoning performance while running roughly 20 % faster than the original R1 and more than 2× faster than R1-0528 under vLLM, giving a favorable cost-to-intelligence trade-off. The checkpoint supports contexts up to 60 k tokens in standard use (tested to ~130 k) and maintains consistent token behaviour, making it suitable for long-context analysis, dialogue and other open-ended generation tasks.",
+ "context_length": 163840,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "DeepSeek",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000003",
+ "completion": "0.0000012",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 163840,
+ "max_completion_tokens": 163840,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "include_reasoning",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "reasoning",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "morph/morph-v3-large",
@@ -3354,7 +4479,7 @@
"hugging_face_id": "",
"name": "Morph: Morph V3 Large",
"created": 1751910858,
- "description": "Morph's high-accuracy apply model for complex code edits. 2000+ tokens/sec with 98% accuracy for precise code transformations.",
+ "description": "Morph's high-accuracy apply model for complex code edits. ~4,500 tokens/sec with 98% accuracy for precise code transformations.\n\nThe model requires the prompt to be in the following format: \n{instruction}\n{initial_code}\n{edit_snippet}\n\nZero Data Retention is enabled for Morph. Learn more about this model in their [documentation](https://docs.morphllm.com/quickstart)",
"context_length": 81920,
"architecture": {
"modality": "text->text",
@@ -3385,7 +4510,12 @@
"max_tokens",
"stop",
"temperature"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "morph/morph-v3-fast",
@@ -3393,7 +4523,7 @@
"hugging_face_id": "",
"name": "Morph: Morph V3 Fast",
"created": 1751910002,
- "description": "Morph's fastest apply model for code edits. 4500+ tokens/sec with 96% accuracy for rapid code transformations.",
+ "description": "Morph's fastest apply model for code edits. ~10,500 tokens/sec with 96% accuracy for rapid code transformations.\n\nThe model requires the prompt to be in the following format: \n{instruction}\n{initial_code}\n{edit_snippet}\n\nZero Data Retention is enabled for Morph. Learn more about this model in their [documentation](https://docs.morphllm.com/quickstart)",
"context_length": 81920,
"architecture": {
"modality": "text->text",
@@ -3407,8 +4537,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000009",
- "completion": "0.0000019",
+ "prompt": "0.0000008",
+ "completion": "0.0000012",
"request": "0",
"image": "0",
"web_search": "0",
@@ -3424,7 +4554,12 @@
"max_tokens",
"stop",
"temperature"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "baidu/ernie-4.5-vl-424b-a47b",
@@ -3463,9 +4598,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"reasoning",
"repetition_penalty",
@@ -3474,7 +4607,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "baidu/ernie-4.5-300b-a47b",
@@ -3511,9 +4645,7 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"repetition_penalty",
"response_format",
@@ -3523,7 +4655,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thedrummer/anubis-70b-v1.1",
@@ -3532,7 +4665,7 @@
"name": "TheDrummer: Anubis 70B V1.1",
"created": 1751208347,
"description": "TheDrummer's Anubis v1.1 is an unaligned, creative Llama 3.3 70B model focused on providing character-driven roleplay & stories. It excels at gritty, visceral prose, unique character adherence, and coherent narratives, while maintaining the instruction following Llama 3.3 70B is known for.",
- "context_length": 16384,
+ "context_length": 131072,
"architecture": {
"modality": "text->text",
"input_modalities": [
@@ -3545,16 +4678,16 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000004",
- "completion": "0.0000007",
+ "prompt": "0.00000065",
+ "completion": "0.000001",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 16384,
- "max_completion_tokens": null,
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -3565,14 +4698,13 @@
"min_p",
"presence_penalty",
"repetition_penalty",
- "response_format",
"seed",
"stop",
- "structured_outputs",
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "inception/mercury",
@@ -3619,7 +4751,12 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "mistralai/mistral-small-3.2-24b-instruct:free",
@@ -3672,7 +4809,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mistral-small-3.2-24b-instruct",
@@ -3681,7 +4821,7 @@
"name": "Mistral: Mistral Small 3.2 24B",
"created": 1750443016,
"description": "Mistral-Small-3.2-24B-Instruct-2506 is an updated 24B parameter model from Mistral optimized for instruction following, repetition reduction, and improved function calling. Compared to the 3.1 release, version 3.2 significantly improves accuracy on WildBench and Arena Hard, reduces infinite generations, and delivers gains in tool use and structured output tasks.\n\nIt supports image and text inputs with structured outputs, function/tool calling, and strong performance across coding (HumanEval+, MBPP), STEM (MMLU, MATH, GPQA), and vision benchmarks (ChartQA, DocVQA).",
- "context_length": 128000,
+ "context_length": 131072,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -3695,16 +4835,16 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.000000075",
- "completion": "0.0000002",
+ "prompt": "0.00000006",
+ "completion": "0.00000018",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 128000,
- "max_completion_tokens": null,
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -3726,7 +4866,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "minimax/minimax-m1",
@@ -3748,8 +4891,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.0000003",
- "completion": "0.00000165",
+ "prompt": "0.0000004",
+ "completion": "0.0000022",
"request": "0",
"image": "0",
"web_search": "0",
@@ -3764,9 +4907,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"reasoning",
"repetition_penalty",
@@ -3778,7 +4919,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.5-flash-lite-preview-06-17",
@@ -3807,6 +4949,7 @@
"completion": "0.0000004",
"request": "0",
"image": "0",
+ "audio": "0.0000003",
"web_search": "0",
"internal_reasoning": "0",
"input_cache_read": "0.000000025",
@@ -3830,7 +4973,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.5-flash",
@@ -3882,7 +5026,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.5-pro",
@@ -3934,7 +5079,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "moonshotai/kimi-dev-72b:free",
@@ -3985,7 +5131,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "moonshotai/kimi-dev-72b",
@@ -4029,7 +5176,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o3-pro",
@@ -4075,7 +5223,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-3-mini",
@@ -4125,7 +5274,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-3",
@@ -4175,7 +5325,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/magistral-small-2506",
@@ -4224,7 +5375,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/magistral-medium-2506",
@@ -4273,7 +5427,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/magistral-medium-2506:thinking",
@@ -4322,7 +5479,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "google/gemini-2.5-pro-preview",
@@ -4374,7 +5534,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-0528-qwen3-8b:free",
@@ -4425,7 +5586,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-0528-qwen3-8b",
@@ -4434,7 +5596,7 @@
"name": "DeepSeek: Deepseek R1 0528 Qwen3 8B",
"created": 1748538543,
"description": "DeepSeek-R1-0528 is a lightly upgraded release of DeepSeek R1 that taps more compute and smarter post-training tricks, pushing its reasoning and inference to the brink of flagship models like O3 and Gemini 2.5 Pro.\nIt now tops math, programming, and logic leaderboards, showcasing a step-change in depth-of-thought.\nThe distilled variant, DeepSeek-R1-0528-Qwen3-8B, transfers this chain-of-thought into an 8 B-parameter form, beating standard Qwen3 8B by +10 pp and tying the 235 B “thinking” giant on AIME 2024.",
- "context_length": 131072,
+ "context_length": 32768,
"architecture": {
"modality": "text->text",
"input_modalities": [
@@ -4447,16 +5609,16 @@
"instruct_type": "deepseek-r1"
},
"pricing": {
- "prompt": "0.00000001",
- "completion": "0.00000005",
+ "prompt": "0.00000003",
+ "completion": "0.00000011",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 131072,
- "max_completion_tokens": null,
+ "context_length": 32768,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -4476,7 +5638,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-0528:free",
@@ -4527,7 +5690,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-0528",
@@ -4558,7 +5722,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -4582,7 +5746,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-opus-4",
@@ -4610,7 +5775,7 @@
"completion": "0.000075",
"request": "0",
"image": "0.024",
- "web_search": "0.01",
+ "web_search": "0",
"internal_reasoning": "0",
"input_cache_read": "0.0000015",
"input_cache_write": "0.00001875"
@@ -4618,7 +5783,7 @@
"top_provider": {
"context_length": 200000,
"max_completion_tokens": 32000,
- "is_moderated": true
+ "is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
@@ -4631,7 +5796,12 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "anthropic/claude-sonnet-4",
@@ -4680,7 +5850,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/devstral-small-2505:free",
@@ -4731,7 +5902,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/devstral-small-2505",
@@ -4753,8 +5927,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000014",
+ "prompt": "0.00000005",
+ "completion": "0.00000022",
"request": "0",
"image": "0",
"web_search": "0",
@@ -4762,7 +5936,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -4784,7 +5958,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "google/gemma-3n-e4b-it:free",
@@ -4828,7 +6005,8 @@
"stop",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3n-e4b-it",
@@ -4874,7 +6052,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/codex-mini",
@@ -4920,7 +6099,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.3-8b-instruct:free",
@@ -4965,7 +6145,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/deephermes-3-mistral-24b-preview",
@@ -4987,8 +6168,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000013",
- "completion": "0.00000051",
+ "prompt": "0.00000015",
+ "completion": "0.00000059",
"request": "0",
"image": "0",
"web_search": "0",
@@ -4996,7 +6177,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -5016,7 +6197,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-medium-3",
@@ -5064,7 +6246,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "google/gemini-2.5-pro-preview-05-06",
@@ -5116,7 +6301,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arcee-ai/spotlight",
@@ -5163,7 +6349,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arcee-ai/maestro-reasoning",
@@ -5209,7 +6396,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arcee-ai/virtuoso-large",
@@ -5257,7 +6445,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arcee-ai/coder-large",
@@ -5303,7 +6492,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/phi-4-reasoning-plus",
@@ -5352,7 +6542,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "inception/mercury-coder",
@@ -5399,7 +6590,12 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "qwen/qwen3-4b:free",
@@ -5448,7 +6644,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-prover-v2",
@@ -5495,7 +6692,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-guard-4-12b",
@@ -5544,7 +6742,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-30b-a3b:free",
@@ -5595,7 +6794,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-30b-a3b",
@@ -5626,7 +6826,7 @@
},
"top_provider": {
"context_length": 40960,
- "max_completion_tokens": null,
+ "max_completion_tokens": 40960,
"is_moderated": false
},
"per_request_limits": null,
@@ -5650,7 +6850,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-8b:free",
@@ -5701,7 +6902,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-8b",
@@ -5739,9 +6941,7 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"reasoning",
"repetition_penalty",
@@ -5750,7 +6950,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-14b:free",
@@ -5801,7 +7002,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-14b",
@@ -5823,8 +7025,8 @@
"instruct_type": "qwen3"
},
"pricing": {
- "prompt": "0.00000006",
- "completion": "0.00000024",
+ "prompt": "0.00000005",
+ "completion": "0.00000022",
"request": "0",
"image": "0",
"web_search": "0",
@@ -5856,7 +7058,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-32b",
@@ -5878,8 +7081,8 @@
"instruct_type": "qwen3"
},
"pricing": {
- "prompt": "0.00000003",
- "completion": "0.00000013",
+ "prompt": "0.00000005",
+ "completion": "0.0000002",
"request": "0",
"image": "0",
"web_search": "0",
@@ -5887,7 +7090,7 @@
},
"top_provider": {
"context_length": 40960,
- "max_completion_tokens": null,
+ "max_completion_tokens": 40960,
"is_moderated": false
},
"per_request_limits": null,
@@ -5911,7 +7114,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-235b-a22b:free",
@@ -5966,7 +7170,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen3-235b-a22b",
@@ -6021,7 +7226,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "tngtech/deepseek-r1t-chimera:free",
@@ -6072,7 +7278,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "tngtech/deepseek-r1t-chimera",
@@ -6094,8 +7301,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.0000003",
+ "completion": "0.0000012",
"request": "0",
"image": "0",
"web_search": "0",
@@ -6103,7 +7310,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -6123,7 +7330,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/mai-ds-r1:free",
@@ -6174,7 +7382,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/mai-ds-r1",
@@ -6196,8 +7405,8 @@
"instruct_type": "deepseek-r1"
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.0000003",
+ "completion": "0.0000012",
"request": "0",
"image": "0",
"web_search": "0",
@@ -6205,7 +7414,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -6225,7 +7434,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thudm/glm-z1-32b",
@@ -6247,8 +7457,8 @@
"instruct_type": "deepseek-r1"
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000014",
+ "prompt": "0.00000005",
+ "completion": "0.00000022",
"request": "0",
"image": "0",
"web_search": "0",
@@ -6256,7 +7466,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -6276,7 +7486,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o4-mini-high",
@@ -6323,7 +7534,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o3",
@@ -6370,7 +7582,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o4-mini",
@@ -6417,7 +7630,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "shisa-ai/shisa-v2-llama3.3-70b:free",
@@ -6466,7 +7680,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "shisa-ai/shisa-v2-llama3.3-70b",
@@ -6488,8 +7703,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000014",
+ "prompt": "0.00000005",
+ "completion": "0.00000022",
"request": "0",
"image": "0",
"web_search": "0",
@@ -6497,7 +7712,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -6515,7 +7730,58 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "qwen/qwen2.5-coder-7b-instruct",
+ "canonical_slug": "qwen/qwen2.5-coder-7b-instruct",
+ "hugging_face_id": "Qwen/Qwen2.5-Coder-7B-Instruct",
+ "name": "Qwen: Qwen2.5 Coder 7B Instruct",
+ "created": 1744734887,
+ "description": "Qwen2.5-Coder-7B-Instruct is a 7B parameter instruction-tuned language model optimized for code-related tasks such as code generation, reasoning, and bug fixing. Based on the Qwen2.5 architecture, it incorporates enhancements like RoPE, SwiGLU, RMSNorm, and GQA attention with support for up to 128K tokens using YaRN-based extrapolation. It is trained on a large corpus of source code, synthetic data, and text-code grounding, providing robust performance across programming languages and agentic coding workflows.\n\nThis model is part of the Qwen2.5-Coder family and offers strong compatibility with tools like vLLM for efficient deployment. Released under the Apache 2.0 license.",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000003",
+ "completion": "0.00000009",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4.1",
@@ -6569,7 +7835,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4.1-mini",
@@ -6623,7 +7890,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4.1-nano",
@@ -6676,7 +7944,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "eleutherai/llemma_7b",
@@ -6722,7 +7991,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "alfredpros/codellama-7b-instruct-solidity",
@@ -6768,7 +8038,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arliai/qwq-32b-arliai-rpr-v1:free",
@@ -6819,7 +8090,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "arliai/qwq-32b-arliai-rpr-v1",
@@ -6841,8 +8113,8 @@
"instruct_type": "deepseek-r1"
},
"pricing": {
- "prompt": "0.00000002",
- "completion": "0.00000007",
+ "prompt": "0.00000003",
+ "completion": "0.00000011",
"request": "0",
"image": "0",
"web_search": "0",
@@ -6850,7 +8122,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -6870,7 +8142,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "agentica-org/deepcoder-14b-preview:free",
@@ -6921,7 +8194,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "agentica-org/deepcoder-14b-preview",
@@ -6972,111 +8246,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "moonshotai/kimi-vl-a3b-thinking:free",
- "canonical_slug": "moonshotai/kimi-vl-a3b-thinking",
- "hugging_face_id": "moonshotai/Kimi-VL-A3B-Thinking",
- "name": "MoonshotAI: Kimi VL A3B Thinking (free)",
- "created": 1744304841,
- "description": "Kimi-VL is a lightweight Mixture-of-Experts vision-language model that activates only 2.8B parameters per step while delivering strong performance on multimodal reasoning and long-context tasks. The Kimi-VL-A3B-Thinking variant, fine-tuned with chain-of-thought and reinforcement learning, excels in math and visual reasoning benchmarks like MathVision, MMMU, and MathVista, rivaling much larger models such as Qwen2.5-VL-7B and Gemma-3-12B. It supports 128K context and high-resolution input via its MoonViT encoder.",
- "context_length": 131072,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "image",
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 131072,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
- },
- {
- "id": "moonshotai/kimi-vl-a3b-thinking",
- "canonical_slug": "moonshotai/kimi-vl-a3b-thinking",
- "hugging_face_id": "moonshotai/Kimi-VL-A3B-Thinking",
- "name": "MoonshotAI: Kimi VL A3B Thinking",
- "created": 1744304841,
- "description": "Kimi-VL is a lightweight Mixture-of-Experts vision-language model that activates only 2.8B parameters per step while delivering strong performance on multimodal reasoning and long-context tasks. The Kimi-VL-A3B-Thinking variant, fine-tuned with chain-of-thought and reinforcement learning, excels in math and visual reasoning benchmarks like MathVision, MMMU, and MathVista, rivaling much larger models such as Qwen2.5-VL-7B and Gemma-3-12B. It supports 128K context and high-resolution input via its MoonViT encoder.",
- "context_length": 131072,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "image",
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.00000002",
- "completion": "0.00000007",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 131072,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-3-mini-beta",
@@ -7125,7 +8296,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "x-ai/grok-3-beta",
@@ -7174,7 +8346,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nvidia/llama-3.1-nemotron-ultra-253b-v1",
@@ -7223,7 +8396,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-4-maverick:free",
@@ -7269,7 +8443,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-4-maverick",
@@ -7323,7 +8498,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-4-scout:free",
@@ -7369,7 +8545,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-4-scout",
@@ -7378,7 +8555,7 @@
"name": "Meta: Llama 4 Scout",
"created": 1743881519,
"description": "Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens.\n\nBuilt for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.",
- "context_length": 1048576,
+ "context_length": 327680,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -7395,13 +8572,13 @@
"prompt": "0.00000008",
"completion": "0.0000003",
"request": "0",
- "image": "0",
+ "image": "0.0003342",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 1048576,
- "max_completion_tokens": 1048576,
+ "context_length": 327680,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
@@ -7423,7 +8600,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "allenai/molmo-7b-d",
@@ -7471,7 +8649,12 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "qwen/qwen2.5-vl-32b-instruct:free",
@@ -7480,57 +8663,6 @@
"name": "Qwen: Qwen2.5 VL 32B Instruct (free)",
"created": 1742839838,
"description": "Qwen2.5-VL-32B is a multimodal vision-language model fine-tuned through reinforcement learning for enhanced mathematical reasoning, structured outputs, and visual problem-solving capabilities. It excels at visual analysis tasks, including object recognition, textual interpretation within images, and precise event localization in extended videos. Qwen2.5-VL-32B demonstrates state-of-the-art performance across multimodal benchmarks such as MMMU, MathVista, and VideoMME, while maintaining strong reasoning and clarity in text-based tasks like MMLU, mathematical problem-solving, and code generation.",
- "context_length": 8192,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 8192,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
- },
- {
- "id": "qwen/qwen2.5-vl-32b-instruct",
- "canonical_slug": "qwen/qwen2.5-vl-32b-instruct",
- "hugging_face_id": "Qwen/Qwen2.5-VL-32B-Instruct",
- "name": "Qwen: Qwen2.5 VL 32B Instruct",
- "created": 1742839838,
- "description": "Qwen2.5-VL-32B is a multimodal vision-language model fine-tuned through reinforcement learning for enhanced mathematical reasoning, structured outputs, and visual problem-solving capabilities. It excels at visual analysis tasks, including object recognition, textual interpretation within images, and precise event localization in extended videos. Qwen2.5-VL-32B demonstrates state-of-the-art performance across multimodal benchmarks such as MMMU, MathVista, and VideoMME, while maintaining strong reasoning and clarity in text-based tasks like MMLU, mathematical problem-solving, and code generation.",
"context_length": 16384,
"architecture": {
"modality": "text+image->text",
@@ -7545,8 +8677,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000014",
+ "prompt": "0",
+ "completion": "0",
"request": "0",
"image": "0",
"web_search": "0",
@@ -7558,6 +8690,58 @@
"is_moderated": false
},
"per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "qwen/qwen2.5-vl-32b-instruct",
+ "canonical_slug": "qwen/qwen2.5-vl-32b-instruct",
+ "hugging_face_id": "Qwen/Qwen2.5-VL-32B-Instruct",
+ "name": "Qwen: Qwen2.5 VL 32B Instruct",
+ "created": 1742839838,
+ "description": "Qwen2.5-VL-32B is a multimodal vision-language model fine-tuned through reinforcement learning for enhanced mathematical reasoning, structured outputs, and visual problem-solving capabilities. It excels at visual analysis tasks, including object recognition, textual interpretation within images, and precise event localization in extended videos. Qwen2.5-VL-32B demonstrates state-of-the-art performance across multimodal benchmarks such as MMMU, MathVista, and VideoMME, while maintaining strong reasoning and clarity in text-based tasks like MMLU, mathematical problem-solving, and code generation.",
+ "context_length": 16384,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000005",
+ "completion": "0.00000022",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 16384,
+ "max_completion_tokens": 16384,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
"logit_bias",
@@ -7574,7 +8758,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-chat-v3-0324:free",
@@ -7625,7 +8810,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-chat-v3-0324",
@@ -7647,8 +8833,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.00000024",
+ "completion": "0.00000084",
"request": "0",
"image": "0",
"web_search": "0",
@@ -7656,7 +8842,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -7678,7 +8864,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o1-pro",
@@ -7722,7 +8909,8 @@
"response_format",
"seed",
"structured_outputs"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-small-3.1-24b-instruct:free",
@@ -7776,7 +8964,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mistral-small-3.1-24b-instruct",
@@ -7785,7 +8976,7 @@
"name": "Mistral: Mistral Small 3.1 24B",
"created": 1742238937,
"description": "Mistral Small 3.1 24B Instruct is an upgraded variant of Mistral Small 3 (2501), featuring 24 billion parameters with advanced multimodal capabilities. It provides state-of-the-art performance in text-based reasoning and vision tasks, including image analysis, programming, mathematical reasoning, and multilingual support across dozens of languages. Equipped with an extensive 128k token context window and optimized for efficient local inference, it supports use cases such as conversational agents, function calling, long-document comprehension, and privacy-sensitive deployments. The updated version is [Mistral Small 3.2](mistralai/mistral-small-3.2-24b-instruct)",
- "context_length": 131072,
+ "context_length": 128000,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -7799,16 +8990,16 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000015",
+ "prompt": "0.00000005",
+ "completion": "0.0000001",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 131072,
- "max_completion_tokens": 96000,
+ "context_length": 128000,
+ "max_completion_tokens": null,
"is_moderated": false
},
"per_request_limits": null,
@@ -7830,7 +9021,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "allenai/olmo-2-0325-32b-instruct",
@@ -7852,8 +9046,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.000001",
- "completion": "0.0000015",
+ "prompt": "0.0000002",
+ "completion": "0.00000035",
"request": "0",
"image": "0",
"web_search": "0",
@@ -7877,7 +9071,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-4b-it:free",
@@ -7920,7 +9115,8 @@
"structured_outputs",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-4b-it",
@@ -7929,7 +9125,7 @@
"name": "Google: Gemma 3 4B",
"created": 1741905510,
"description": "Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling.",
- "context_length": 131072,
+ "context_length": 96000,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -7943,21 +9139,23 @@
"instruct_type": "gemma"
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000008",
+ "prompt": "0.00000001703012",
+ "completion": "0.0000000681536",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 131072,
+ "context_length": 96000,
"max_completion_tokens": null,
"is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
+ "logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -7967,8 +9165,10 @@
"stop",
"temperature",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-12b-it:free",
@@ -8005,20 +9205,12 @@
},
"per_request_limits": null,
"supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
"max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
"seed",
- "stop",
"temperature",
- "top_k",
- "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-12b-it",
@@ -8027,7 +9219,7 @@
"name": "Google: Gemma 3 12B",
"created": 1741902625,
"description": "Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after [Gemma 3 27B](google/gemma-3-27b-it)",
- "context_length": 96000,
+ "context_length": 131072,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -8041,16 +9233,16 @@
"instruct_type": "gemma"
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000014",
+ "prompt": "0.00000003",
+ "completion": "0.0000001",
"request": "0",
"image": "0",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 96000,
- "max_completion_tokens": 8192,
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -8065,11 +9257,13 @@
"response_format",
"seed",
"stop",
+ "structured_outputs",
"temperature",
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "cohere/command-a",
@@ -8115,7 +9309,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-mini-search-preview",
@@ -8155,7 +9350,8 @@
"response_format",
"structured_outputs",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-search-preview",
@@ -8195,7 +9391,8 @@
"response_format",
"structured_outputs",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-27b-it:free",
@@ -8247,7 +9444,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-3-27b-it",
@@ -8256,7 +9454,7 @@
"name": "Google: Gemma 3 27B",
"created": 1741756359,
"description": "Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to [Gemma 2](google/gemma-2-27b-it)",
- "context_length": 96000,
+ "context_length": 131072,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -8270,16 +9468,16 @@
"instruct_type": "gemma"
},
"pricing": {
- "prompt": "0.00000007",
- "completion": "0.00000026",
+ "prompt": "0.00000009",
+ "completion": "0.00000016",
"request": "0",
- "image": "0",
+ "image": "0.0000256",
"web_search": "0",
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 96000,
- "max_completion_tokens": 8192,
+ "context_length": 131072,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
@@ -8299,54 +9497,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "thedrummer/anubis-pro-105b-v1",
- "canonical_slug": "thedrummer/anubis-pro-105b-v1",
- "hugging_face_id": "TheDrummer/Anubis-Pro-105B-v1",
- "name": "TheDrummer: Anubis Pro 105B V1",
- "created": 1741642290,
- "description": "Anubis Pro 105B v1 is an expanded and refined variant of Meta’s Llama 3.3 70B, featuring 50% additional layers and further fine-tuning to leverage its increased capacity. Designed for advanced narrative, roleplay, and instructional tasks, it demonstrates enhanced emotional intelligence, creativity, nuanced character portrayal, and superior prompt adherence compared to smaller models. Its larger parameter count allows for deeper contextual understanding and extended reasoning capabilities, optimized for engaging, intelligent, and coherent interactions.",
- "context_length": 131072,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000005",
- "completion": "0.000001",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 131072,
- "max_completion_tokens": 131072,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thedrummer/skyfall-36b-v2",
@@ -8368,8 +9520,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000016",
+ "prompt": "0.00000008",
+ "completion": "0.00000033",
"request": "0",
"image": "0",
"web_search": "0",
@@ -8377,7 +9529,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -8395,7 +9547,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/phi-4-multimodal-instruct",
@@ -8446,7 +9599,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/sonar-reasoning-pro",
@@ -8492,7 +9646,8 @@
"top_k",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/sonar-pro",
@@ -8536,7 +9691,8 @@
"top_k",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/sonar-deep-research",
@@ -8581,52 +9737,8 @@
"top_k",
"top_p",
"web_search_options"
- ]
- },
- {
- "id": "qwen/qwq-32b:free",
- "canonical_slug": "qwen/qwq-32b",
- "hugging_face_id": "Qwen/QwQ-32B",
- "name": "Qwen: QwQ 32B (free)",
- "created": 1741208814,
- "description": "QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen",
- "instruct_type": "qwq"
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "stop",
- "structured_outputs",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwq-32b",
@@ -8681,7 +9793,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/deephermes-3-llama-3-8b-preview:free",
@@ -8730,7 +9843,58 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "nousresearch/deephermes-3-llama-3-8b-preview",
+ "canonical_slug": "nousresearch/deephermes-3-llama-3-8b-preview",
+ "hugging_face_id": "NousResearch/DeepHermes-3-Llama-3-8B-Preview",
+ "name": "Nous: DeepHermes 3 Llama 3 8B Preview",
+ "created": 1740719372,
+ "description": "DeepHermes 3 Preview is the latest version of our flagship Hermes series of LLMs by Nous Research, and one of the first models in the world to unify Reasoning (long chains of thought that improve answer accuracy) and normal LLM response modes into one model. We have also improved LLM annotation, judgement, and function calling.\n\nDeepHermes 3 Preview is one of the first LLM models to unify both \"intuitive\", traditional mode responses and long chain of thought reasoning responses into a single model, toggled by a system prompt.",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Other",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000003",
+ "completion": "0.00000011",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": 131072,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.0-flash-lite-001",
@@ -8778,7 +9942,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.7-sonnet",
@@ -8827,7 +9992,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.7-sonnet:thinking",
@@ -8874,7 +10040,8 @@
"temperature",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/r1-1776",
@@ -8918,7 +10085,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-saba",
@@ -8965,109 +10133,10 @@
"tool_choice",
"tools",
"top_p"
- ]
- },
- {
- "id": "cognitivecomputations/dolphin3.0-r1-mistral-24b:free",
- "canonical_slug": "cognitivecomputations/dolphin3.0-r1-mistral-24b",
- "hugging_face_id": "cognitivecomputations/Dolphin3.0-R1-Mistral-24B",
- "name": "Dolphin3.0 R1 Mistral 24B (free)",
- "created": 1739462498,
- "description": "Dolphin 3.0 R1 is the next generation of the Dolphin series of instruct-tuned models. Designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases.\n\nThe R1 version has been trained for 3 epochs to reason using 800k reasoning traces from the Dolphin-R1 dataset.\n\nDolphin aims to be a general purpose reasoning instruct model, similar to the models behind ChatGPT, Claude, Gemini.\n\nPart of the [Dolphin 3.0 Collection](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3) Curated and trained by [Eric Hartford](https://huggingface.co/ehartford), [Ben Gitter](https://huggingface.co/bigstorm), [BlouseJury](https://huggingface.co/BlouseJury) and [Cognitive Computations](https://huggingface.co/cognitivecomputations)",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": "deepseek-r1"
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
- },
- {
- "id": "cognitivecomputations/dolphin3.0-r1-mistral-24b",
- "canonical_slug": "cognitivecomputations/dolphin3.0-r1-mistral-24b",
- "hugging_face_id": "cognitivecomputations/Dolphin3.0-R1-Mistral-24B",
- "name": "Dolphin3.0 R1 Mistral 24B",
- "created": 1739462498,
- "description": "Dolphin 3.0 R1 is the next generation of the Dolphin series of instruct-tuned models. Designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases.\n\nThe R1 version has been trained for 3 epochs to reason using 800k reasoning traces from the Dolphin-R1 dataset.\n\nDolphin aims to be a general purpose reasoning instruct model, similar to the models behind ChatGPT, Claude, Gemini.\n\nPart of the [Dolphin 3.0 Collection](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3) Curated and trained by [Eric Hartford](https://huggingface.co/ehartford), [Ben Gitter](https://huggingface.co/bigstorm), [BlouseJury](https://huggingface.co/BlouseJury) and [Cognitive Computations](https://huggingface.co/cognitivecomputations)",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Other",
- "instruct_type": "deepseek-r1"
- },
- "pricing": {
- "prompt": "0.00000001",
- "completion": "0.00000003",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "cognitivecomputations/dolphin3.0-mistral-24b:free",
@@ -9116,7 +10185,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "cognitivecomputations/dolphin3.0-mistral-24b",
@@ -9138,8 +10208,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000003",
- "completion": "0.00000011",
+ "prompt": "0.00000004",
+ "completion": "0.00000017",
"request": "0",
"image": "0",
"web_search": "0",
@@ -9147,7 +10217,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -9165,7 +10235,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-guard-3-8b",
@@ -9215,7 +10286,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o3-mini-high",
@@ -9259,56 +10331,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
- },
- {
- "id": "deepseek/deepseek-r1-distill-llama-8b",
- "canonical_slug": "deepseek/deepseek-r1-distill-llama-8b",
- "hugging_face_id": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
- "name": "DeepSeek: R1 Distill Llama 8B",
- "created": 1738937718,
- "description": "DeepSeek R1 Distill Llama 8B is a distilled large language model based on [Llama-3.1-8B-Instruct](/meta-llama/llama-3.1-8b-instruct), using outputs from [DeepSeek R1](/deepseek/deepseek-r1). The model combines advanced distillation techniques to achieve high performance across multiple benchmarks, including:\n\n- AIME 2024 pass@1: 50.4\n- MATH-500 pass@1: 89.1\n- CodeForces Rating: 1205\n\nThe model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.\n\nHugging Face: \n- [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) \n- [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) |",
- "context_length": 32000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "deepseek-r1"
- },
- "pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000004",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32000,
- "max_completion_tokens": 32000,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "include_reasoning",
- "logit_bias",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "reasoning",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.0-flash-001",
@@ -9359,7 +10383,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-vl-plus",
@@ -9402,7 +10427,8 @@
"seed",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "aion-labs/aion-1.0",
@@ -9443,7 +10469,8 @@
"reasoning",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "aion-labs/aion-1.0-mini",
@@ -9484,7 +10511,8 @@
"reasoning",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "aion-labs/aion-rp-llama-3.1-8b",
@@ -9523,7 +10551,8 @@
"max_tokens",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-vl-max",
@@ -9566,7 +10595,8 @@
"seed",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-turbo",
@@ -9611,7 +10641,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen2.5-vl-72b-instruct:free",
@@ -9620,7 +10651,7 @@
"name": "Qwen: Qwen2.5 VL 72B Instruct (free)",
"created": 1738410311,
"description": "Qwen2.5-VL is proficient in recognizing common objects such as flowers, birds, fish, and insects. It is also highly capable of analyzing texts, charts, icons, graphics, and layouts within images.",
- "context_length": 32768,
+ "context_length": 131072,
"architecture": {
"modality": "text+image->text",
"input_modalities": [
@@ -9642,23 +10673,20 @@
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
+ "context_length": 131072,
+ "max_completion_tokens": 2048,
"is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
- "frequency_penalty",
"max_tokens",
"presence_penalty",
"response_format",
"seed",
- "stop",
- "structured_outputs",
"temperature",
- "top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen2.5-vl-72b-instruct",
@@ -9681,8 +10709,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000007",
- "completion": "0.00000028",
+ "prompt": "0.00000008",
+ "completion": "0.00000033",
"request": "0",
"image": "0",
"web_search": "0",
@@ -9690,7 +10718,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -9708,7 +10736,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-plus",
@@ -9753,7 +10782,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-max",
@@ -9798,7 +10828,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o3-mini",
@@ -9842,7 +10873,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-small-24b-instruct-2501:free",
@@ -9891,7 +10923,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mistral-small-24b-instruct-2501",
@@ -9913,8 +10948,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000004",
- "completion": "0.00000015",
+ "prompt": "0.00000005",
+ "completion": "0.00000008",
"request": "0",
"image": "0",
"web_search": "0",
@@ -9922,7 +10957,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
@@ -9944,7 +10979,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "deepseek/deepseek-r1-distill-qwen-32b",
@@ -9982,7 +11020,6 @@
"supported_parameters": [
"frequency_penalty",
"include_reasoning",
- "logit_bias",
"max_tokens",
"min_p",
"presence_penalty",
@@ -9991,10 +11028,12 @@
"response_format",
"seed",
"stop",
+ "structured_outputs",
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-distill-qwen-14b",
@@ -10043,7 +11082,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/sonar-reasoning",
@@ -10088,7 +11128,8 @@
"top_k",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "perplexity/sonar",
@@ -10132,7 +11173,8 @@
"top_k",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "liquid/lfm-7b",
@@ -10169,20 +11211,17 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
- "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
"repetition_penalty",
- "response_format",
"seed",
"stop",
"temperature",
"top_k",
- "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "liquid/lfm-3b",
@@ -10228,7 +11267,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-distill-llama-70b:free",
@@ -10279,7 +11319,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1-distill-llama-70b",
@@ -10310,7 +11351,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": null,
+ "max_completion_tokens": 131072,
"is_moderated": false
},
"per_request_limits": null,
@@ -10328,12 +11369,11 @@
"seed",
"stop",
"temperature",
- "tool_choice",
- "tools",
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1:free",
@@ -10373,7 +11413,8 @@
"max_tokens",
"reasoning",
"temperature"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-r1",
@@ -10428,7 +11469,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "minimax/minimax-01",
@@ -10468,7 +11510,8 @@
"max_tokens",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/codestral-2501",
@@ -10515,7 +11558,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "microsoft/phi-4",
@@ -10563,7 +11609,56 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "sao10k/l3.1-70b-hanami-x1",
+ "canonical_slug": "sao10k/l3.1-70b-hanami-x1",
+ "hugging_face_id": "Sao10K/L3.1-70B-Hanami-x1",
+ "name": "Sao10K: Llama 3.1 70B Hanami x1",
+ "created": 1736302854,
+ "description": "This is [Sao10K](/sao10k)'s experiment over [Euryale v2.2](/sao10k/l3.1-euryale-70b).",
+ "context_length": 16000,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.000003",
+ "completion": "0.000003",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 16000,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "deepseek/deepseek-chat",
@@ -10585,8 +11680,8 @@
"instruct_type": null
},
"pricing": {
- "prompt": "0.00000024999988",
- "completion": "0.000000999999888",
+ "prompt": "0.0000003",
+ "completion": "0.00000085",
"request": "0",
"image": "0",
"web_search": "0",
@@ -10594,7 +11689,7 @@
},
"top_provider": {
"context_length": 163840,
- "max_completion_tokens": null,
+ "max_completion_tokens": 163840,
"is_moderated": false
},
"per_request_limits": null,
@@ -10616,7 +11711,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "sao10k/l3.3-euryale-70b",
@@ -10664,7 +11760,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o1",
@@ -10709,7 +11806,8 @@
"structured_outputs",
"tool_choice",
"tools"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "cohere/command-r7b-12-2024",
@@ -10755,7 +11853,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemini-2.0-flash-exp:free",
@@ -10800,7 +11899,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.3-70b-instruct:free",
@@ -10848,7 +11948,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.3-70b-instruct",
@@ -10870,8 +11971,8 @@
"instruct_type": "llama3"
},
"pricing": {
- "prompt": "0.000000012",
- "completion": "0.000000036",
+ "prompt": "0.00000013",
+ "completion": "0.00000039",
"request": "0",
"image": "0",
"web_search": "0",
@@ -10879,7 +11980,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": 131072,
+ "max_completion_tokens": 120000,
"is_moderated": false
},
"per_request_limits": null,
@@ -10901,7 +12002,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "amazon/nova-lite-v1",
@@ -10944,7 +12046,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "amazon/nova-micro-v1",
@@ -10986,7 +12089,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "amazon/nova-pro-v1",
@@ -11029,56 +12133,8 @@
"tools",
"top_k",
"top_p"
- ]
- },
- {
- "id": "qwen/qwq-32b-preview",
- "canonical_slug": "qwen/qwq-32b-preview",
- "hugging_face_id": "Qwen/QwQ-32B-Preview",
- "name": "Qwen: QwQ 32B Preview",
- "created": 1732754541,
- "description": "QwQ-32B-Preview is an experimental research model focused on AI reasoning capabilities developed by the Qwen Team. As a preview release, it demonstrates promising analytical abilities while having several important limitations:\n\n1. **Language Mixing and Code-Switching**: The model may mix languages or switch between them unexpectedly, affecting response clarity.\n2. **Recursive Reasoning Loops**: The model may enter circular reasoning patterns, leading to lengthy responses without a conclusive answer.\n3. **Safety and Ethical Considerations**: The model requires enhanced safety measures to ensure reliable and secure performance, and users should exercise caution when deploying it.\n4. **Performance and Benchmark Limitations**: The model excels in math and coding but has room for improvement in other areas, such as common sense reasoning and nuanced language understanding.\n\n",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen",
- "instruct_type": "deepseek-r1"
- },
- "pricing": {
- "prompt": "0.0000002",
- "completion": "0.0000002",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-2024-11-20",
@@ -11132,7 +12188,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-large-2411",
@@ -11179,7 +12236,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mistral-large-2407",
@@ -11226,7 +12286,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/pixtral-large-2411",
@@ -11274,7 +12337,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "qwen/qwen-2.5-coder-32b-instruct:free",
@@ -11323,7 +12389,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-2.5-coder-32b-instruct",
@@ -11345,8 +12412,8 @@
"instruct_type": "chatml"
},
"pricing": {
- "prompt": "0.00000006",
- "completion": "0.00000015",
+ "prompt": "0.00000004",
+ "completion": "0.00000016",
"request": "0",
"image": "0",
"web_search": "0",
@@ -11354,7 +12421,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": 16384,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -11373,7 +12440,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "raifle/sorcererlm-8x22b",
@@ -11420,7 +12488,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thedrummer/unslopnemo-12b",
@@ -11466,7 +12535,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.5-haiku",
@@ -11512,7 +12582,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.5-haiku-20241022",
@@ -11559,55 +12630,8 @@
"tools",
"top_k",
"top_p"
- ]
- },
- {
- "id": "anthracite-org/magnum-v4-72b",
- "canonical_slug": "anthracite-org/magnum-v4-72b",
- "hugging_face_id": "anthracite-org/magnum-v4-72b",
- "name": "Magnum v4 72B",
- "created": 1729555200,
- "description": "This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet(https://openrouter.ai/anthropic/claude-3.5-sonnet) and Opus(https://openrouter.ai/anthropic/claude-3-opus).\n\nThe model is fine-tuned on top of [Qwen2.5 72B](https://openrouter.ai/qwen/qwen-2.5-72b-instruct).",
- "context_length": 16384,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Qwen",
- "instruct_type": "chatml"
- },
- "pricing": {
- "prompt": "0.000002",
- "completion": "0.000005",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 16384,
- "max_completion_tokens": 2048,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_a",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.5-sonnet",
@@ -11654,7 +12678,61 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "anthracite-org/magnum-v4-72b",
+ "canonical_slug": "anthracite-org/magnum-v4-72b",
+ "hugging_face_id": "anthracite-org/magnum-v4-72b",
+ "name": "Magnum v4 72B",
+ "created": 1729555200,
+ "description": "This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet(https://openrouter.ai/anthropic/claude-3.5-sonnet) and Opus(https://openrouter.ai/anthropic/claude-3-opus).\n\nThe model is fine-tuned on top of [Qwen2.5 72B](https://openrouter.ai/qwen/qwen-2.5-72b-instruct).",
+ "context_length": 16384,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Qwen",
+ "instruct_type": "chatml"
+ },
+ "pricing": {
+ "prompt": "0.0000025",
+ "completion": "0.000005",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 16384,
+ "max_completion_tokens": 2048,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "top_a",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/ministral-8b",
@@ -11701,7 +12779,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/ministral-3b",
@@ -11746,13 +12827,16 @@
"structured_outputs",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "qwen/qwen-2.5-7b-instruct",
"canonical_slug": "qwen/qwen-2.5-7b-instruct",
"hugging_face_id": "Qwen/Qwen2.5-7B-Instruct",
- "name": "Qwen2.5 7B Instruct",
+ "name": "Qwen: Qwen2.5 7B Instruct",
"created": 1729036800,
"description": "Qwen2.5 7B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2:\n\n- Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.\n\n- Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.\n\n- Long-context Support up to 128K tokens and can generate up to 8K tokens.\n\n- Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.\n\nUsage of this model is subject to [Tongyi Qianwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen1.5-110B-Chat/blob/main/LICENSE).",
"context_length": 65536,
@@ -11795,7 +12879,12 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": null,
+ "top_p": null,
+ "frequency_penalty": null
+ }
},
{
"id": "nvidia/llama-3.1-nemotron-70b-instruct",
@@ -11845,7 +12934,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "inflection/inflection-3-productivity",
@@ -11885,7 +12975,8 @@
"stop",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "inflection/inflection-3-pi",
@@ -11925,57 +13016,8 @@
"stop",
"temperature",
"top_p"
- ]
- },
- {
- "id": "google/gemini-flash-1.5-8b",
- "canonical_slug": "google/gemini-flash-1.5-8b",
- "hugging_face_id": null,
- "name": "Google: Gemini 1.5 Flash 8B",
- "created": 1727913600,
- "description": "Gemini Flash 1.5 8B is optimized for speed and efficiency, offering enhanced performance in small prompt tasks like chat, transcription, and translation. With reduced latency, it is highly effective for real-time and large-scale operations. This model focuses on cost-effective solutions while maintaining high-quality results.\n\n[Click here to learn more about this model](https://developers.googleblog.com/en/gemini-15-flash-8b-is-now-generally-available-for-use/).\n\nUsage of Gemini is subject to Google's [Gemini Terms of Use](https://ai.google.dev/terms).",
- "context_length": 1000000,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Gemini",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000000375",
- "completion": "0.00000015",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0",
- "input_cache_read": "0.00000001",
- "input_cache_write": "0.0000000583"
- },
- "top_provider": {
- "context_length": 1000000,
- "max_completion_tokens": 8192,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "thedrummer/rocinante-12b",
@@ -12026,7 +13068,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthracite-org/magnum-v2-72b",
@@ -12073,7 +13116,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.2-3b-instruct:free",
@@ -12116,7 +13160,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.2-3b-instruct",
@@ -12169,7 +13214,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.2-1b-instruct",
@@ -12219,55 +13265,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "meta-llama/llama-3.2-90b-vision-instruct",
- "canonical_slug": "meta-llama/llama-3.2-90b-vision-instruct",
- "hugging_face_id": "meta-llama/Llama-3.2-90B-Vision-Instruct",
- "name": "Meta: Llama 3.2 90B Vision Instruct",
- "created": 1727222400,
- "description": "The Llama 90B Vision model is a top-tier, 90-billion-parameter multimodal model designed for the most challenging visual reasoning and language tasks. It offers unparalleled accuracy in image captioning, visual question answering, and advanced image-text comprehension. Pre-trained on vast multimodal datasets and fine-tuned with human feedback, the Llama 90B Vision is engineered to handle the most demanding image-based AI tasks.\n\nThis model is perfect for industries requiring cutting-edge multimodal AI capabilities, particularly those dealing with complex, real-time visual and textual analysis.\n\nClick here for the [original model card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD_VISION.md).\n\nUsage of this model is subject to [Meta's Acceptable Use Policy](https://www.llama.com/llama3/use-policy/).",
- "context_length": 32768,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "llama3"
- },
- "pricing": {
- "prompt": "0.00000035",
- "completion": "0.0000004",
- "request": "0",
- "image": "0.0005058",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": 16384,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.2-11b-vision-instruct",
@@ -12318,7 +13317,57 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "meta-llama/llama-3.2-90b-vision-instruct",
+ "canonical_slug": "meta-llama/llama-3.2-90b-vision-instruct",
+ "hugging_face_id": "meta-llama/Llama-3.2-90B-Vision-Instruct",
+ "name": "Meta: Llama 3.2 90B Vision Instruct",
+ "created": 1727222400,
+ "description": "The Llama 90B Vision model is a top-tier, 90-billion-parameter multimodal model designed for the most challenging visual reasoning and language tasks. It offers unparalleled accuracy in image captioning, visual question answering, and advanced image-text comprehension. Pre-trained on vast multimodal datasets and fine-tuned with human feedback, the Llama 90B Vision is engineered to handle the most demanding image-based AI tasks.\n\nThis model is perfect for industries requiring cutting-edge multimodal AI capabilities, particularly those dealing with complex, real-time visual and textual analysis.\n\nClick here for the [original model card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD_VISION.md).\n\nUsage of this model is subject to [Meta's Acceptable Use Policy](https://www.llama.com/llama3/use-policy/).",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": "llama3"
+ },
+ "pricing": {
+ "prompt": "0.00000035",
+ "completion": "0.0000004",
+ "request": "0",
+ "image": "0.0005058",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": 16384,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-2.5-72b-instruct:free",
@@ -12367,7 +13416,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-2.5-72b-instruct",
@@ -12398,7 +13448,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -12419,7 +13469,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "neversleep/llama-3.1-lumimaid-8b",
@@ -12457,6 +13508,7 @@
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -12468,8 +13520,10 @@
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o1-mini",
@@ -12508,7 +13562,8 @@
"supported_parameters": [
"max_tokens",
"seed"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/o1-mini-2024-09-12",
@@ -12547,7 +13602,8 @@
"supported_parameters": [
"max_tokens",
"seed"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/pixtral-12b",
@@ -12601,54 +13657,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "cohere/command-r-plus-08-2024",
- "canonical_slug": "cohere/command-r-plus-08-2024",
- "hugging_face_id": null,
- "name": "Cohere: Command R+ (08-2024)",
- "created": 1724976000,
- "description": "command-r-plus-08-2024 is an update of the [Command R+](/models/cohere/command-r-plus) with roughly 50% higher throughput and 25% lower latencies as compared to the previous Command R+ version, while keeping the hardware footprint the same.\n\nRead the launch post [here](https://docs.cohere.com/changelog/command-gets-refreshed).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000025",
- "completion": "0.00001",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tools",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "cohere/command-r-08-2024",
@@ -12695,7 +13707,56 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "cohere/command-r-plus-08-2024",
+ "canonical_slug": "cohere/command-r-plus-08-2024",
+ "hugging_face_id": null,
+ "name": "Cohere: Command R+ (08-2024)",
+ "created": 1724976000,
+ "description": "command-r-plus-08-2024 is an update of the [Command R+](/models/cohere/command-r-plus) with roughly 50% higher throughput and 25% lower latencies as compared to the previous Command R+ version, while keeping the hardware footprint the same.\n\nRead the launch post [here](https://docs.cohere.com/changelog/command-gets-refreshed).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
+ "context_length": 128000,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Cohere",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000025",
+ "completion": "0.00001",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 128000,
+ "max_completion_tokens": 4000,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "qwen/qwen-2.5-vl-7b-instruct",
@@ -12747,7 +13808,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "sao10k/l3.1-euryale-70b",
@@ -12784,7 +13846,6 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
"min_p",
"presence_penalty",
@@ -12796,7 +13857,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/phi-3.5-mini-128k-instruct",
@@ -12837,7 +13899,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/hermes-3-llama-3.1-70b",
@@ -12846,7 +13909,7 @@
"name": "Nous: Hermes 3 70B Instruct",
"created": 1723939200,
"description": "Hermes 3 is a generalist language model with many improvements over [Hermes 2](/models/nousresearch/nous-hermes-2-mistral-7b-dpo), including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.\n\nHermes 3 70B is a competitive, if not superior finetune of the [Llama-3.1 70B foundation model](/models/meta-llama/llama-3.1-70b-instruct), focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.\n\nThe Hermes 3 series builds and expands on the Hermes 2 set of capabilities, including more powerful and reliable function calling and structured output capabilities, generalist assistant capabilities, and improved code generation skills.",
- "context_length": 131072,
+ "context_length": 65000,
"architecture": {
"modality": "text->text",
"input_modalities": [
@@ -12859,7 +13922,7 @@
"instruct_type": "chatml"
},
"pricing": {
- "prompt": "0.00000012",
+ "prompt": "0.0000003",
"completion": "0.0000003",
"request": "0",
"image": "0",
@@ -12867,8 +13930,8 @@
"internal_reasoning": "0"
},
"top_provider": {
- "context_length": 131072,
- "max_completion_tokens": 131072,
+ "context_length": 65000,
+ "max_completion_tokens": null,
"is_moderated": false
},
"per_request_limits": null,
@@ -12890,7 +13953,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "nousresearch/hermes-3-llama-3.1-405b",
@@ -12912,8 +13976,8 @@
"instruct_type": "chatml"
},
"pricing": {
- "prompt": "0.0000008",
- "completion": "0.0000008",
+ "prompt": "0.000001",
+ "completion": "0.000001",
"request": "0",
"image": "0",
"web_search": "0",
@@ -12921,7 +13985,7 @@
},
"top_provider": {
"context_length": 131072,
- "max_completion_tokens": 131072,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
@@ -12940,7 +14004,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/chatgpt-4o-latest",
@@ -12989,7 +14054,8 @@
"temperature",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "sao10k/l3-lunaris-8b",
@@ -13026,7 +14092,6 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
"min_p",
"presence_penalty",
@@ -13037,7 +14102,8 @@
"temperature",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-2024-08-06",
@@ -13091,7 +14157,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.1-405b",
@@ -13113,8 +14180,8 @@
"instruct_type": "none"
},
"pricing": {
- "prompt": "0.000002",
- "completion": "0.000002",
+ "prompt": "0.000004",
+ "completion": "0.000004",
"request": "0",
"image": "0",
"web_search": "0",
@@ -13122,7 +14189,7 @@
},
"top_provider": {
"context_length": 32768,
- "max_completion_tokens": null,
+ "max_completion_tokens": 32768,
"is_moderated": false
},
"per_request_limits": null,
@@ -13140,105 +14207,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "meta-llama/llama-3.1-8b-instruct",
- "canonical_slug": "meta-llama/llama-3.1-8b-instruct",
- "hugging_face_id": "meta-llama/Meta-Llama-3.1-8B-Instruct",
- "name": "Meta: Llama 3.1 8B Instruct",
- "created": 1721692800,
- "description": "Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
- "context_length": 16384,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "llama3"
- },
- "pricing": {
- "prompt": "0.00000002",
- "completion": "0.00000003",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 16384,
- "max_completion_tokens": 16384,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
- },
- {
- "id": "meta-llama/llama-3.1-405b-instruct:free",
- "canonical_slug": "meta-llama/llama-3.1-405b-instruct",
- "hugging_face_id": "meta-llama/Meta-Llama-3.1-405B-Instruct",
- "name": "Meta: Llama 3.1 405B Instruct (free)",
- "created": 1721692800,
- "description": "The highly anticipated 400B class of Llama3 is here! Clocking in at 128k context with impressive eval scores, the Meta AI team continues to push the frontier of open-source LLMs.\n\nMeta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 405B instruct-tuned version is optimized for high quality dialogue usecases.\n\nIt has demonstrated strong performance compared to leading closed-source models including GPT-4o and Claude 3.5 Sonnet in evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
- "context_length": 65536,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "llama3"
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 65536,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "stop",
- "structured_outputs",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3.1-405b-instruct",
@@ -13291,15 +14261,16 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
- "id": "meta-llama/llama-3.1-70b-instruct",
- "canonical_slug": "meta-llama/llama-3.1-70b-instruct",
- "hugging_face_id": "meta-llama/Meta-Llama-3.1-70B-Instruct",
- "name": "Meta: Llama 3.1 70B Instruct",
+ "id": "meta-llama/llama-3.1-8b-instruct",
+ "canonical_slug": "meta-llama/llama-3.1-8b-instruct",
+ "hugging_face_id": "meta-llama/Meta-Llama-3.1-8B-Instruct",
+ "name": "Meta: Llama 3.1 8B Instruct",
"created": 1721692800,
- "description": "Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 70B instruct-tuned version is optimized for high quality dialogue usecases.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
+ "description": "Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 8B instruct-tuned version is fast and efficient.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
"context_length": 131072,
"architecture": {
"modality": "text->text",
@@ -13313,8 +14284,8 @@
"instruct_type": "llama3"
},
"pricing": {
- "prompt": "0.0000001",
- "completion": "0.00000028",
+ "prompt": "0.00000002",
+ "completion": "0.00000003",
"request": "0",
"image": "0",
"web_search": "0",
@@ -13344,7 +14315,62 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "meta-llama/llama-3.1-70b-instruct",
+ "canonical_slug": "meta-llama/llama-3.1-70b-instruct",
+ "hugging_face_id": "meta-llama/Meta-Llama-3.1-70B-Instruct",
+ "name": "Meta: Llama 3.1 70B Instruct",
+ "created": 1721692800,
+ "description": "Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 70B instruct-tuned version is optimized for high quality dialogue usecases.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
+ "context_length": 131072,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": "llama3"
+ },
+ "pricing": {
+ "prompt": "0.0000004",
+ "completion": "0.0000004",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 131072,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-nemo:free",
@@ -13393,7 +14419,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mistral-nemo",
@@ -13446,61 +14475,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "openai/gpt-4o-mini",
- "canonical_slug": "openai/gpt-4o-mini",
- "hugging_face_id": null,
- "name": "OpenAI: GPT-4o-mini",
- "created": 1721260800,
- "description": "GPT-4o mini is OpenAI's newest model after [GPT-4 Omni](/models/openai/gpt-4o), supporting both text and image inputs with text outputs.\n\nAs their most advanced small model, it is many multiples more affordable than other recent frontier models, and more than 60% cheaper than [GPT-3.5 Turbo](/models/openai/gpt-3.5-turbo). It maintains SOTA intelligence, while being significantly more cost-effective.\n\nGPT-4o mini achieves an 82% score on MMLU and presently ranks higher than GPT-4 on chat preferences [common leaderboards](https://arena.lmsys.org/).\n\nCheck out the [launch announcement](https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/) to learn more.\n\n#multimodal",
- "context_length": 128000,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image",
- "file"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "GPT",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.00000015",
- "completion": "0.0000006",
- "request": "0",
- "image": "0.000217",
- "web_search": "0",
- "internal_reasoning": "0",
- "input_cache_read": "0.000000075"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 16384,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_logprobs",
- "top_p",
- "web_search_options"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "openai/gpt-4o-mini-2024-07-18",
@@ -13554,7 +14532,63 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "openai/gpt-4o-mini",
+ "canonical_slug": "openai/gpt-4o-mini",
+ "hugging_face_id": null,
+ "name": "OpenAI: GPT-4o-mini",
+ "created": 1721260800,
+ "description": "GPT-4o mini is OpenAI's newest model after [GPT-4 Omni](/models/openai/gpt-4o), supporting both text and image inputs with text outputs.\n\nAs their most advanced small model, it is many multiples more affordable than other recent frontier models, and more than 60% cheaper than [GPT-3.5 Turbo](/models/openai/gpt-3.5-turbo). It maintains SOTA intelligence, while being significantly more cost-effective.\n\nGPT-4o mini achieves an 82% score on MMLU and presently ranks higher than GPT-4 on chat preferences [common leaderboards](https://arena.lmsys.org/).\n\nCheck out the [launch announcement](https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/) to learn more.\n\n#multimodal",
+ "context_length": 128000,
+ "architecture": {
+ "modality": "text+image->text",
+ "input_modalities": [
+ "text",
+ "image",
+ "file"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "GPT",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00000015",
+ "completion": "0.0000006",
+ "request": "0",
+ "image": "0.000217",
+ "web_search": "0",
+ "internal_reasoning": "0",
+ "input_cache_read": "0.000000075"
+ },
+ "top_provider": {
+ "context_length": 128000,
+ "max_completion_tokens": 16384,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_logprobs",
+ "top_p",
+ "web_search_options"
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-2-27b-it",
@@ -13598,7 +14632,8 @@
"structured_outputs",
"temperature",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-2-9b-it:free",
@@ -13647,7 +14682,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "google/gemma-2-9b-it",
@@ -13670,7 +14706,7 @@
},
"pricing": {
"prompt": "0.00000001",
- "completion": "0.00000002",
+ "completion": "0.00000003",
"request": "0",
"image": "0",
"web_search": "0",
@@ -13693,11 +14729,13 @@
"response_format",
"seed",
"stop",
+ "structured_outputs",
"temperature",
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3.5-sonnet-20240620",
@@ -13744,7 +14782,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "sao10k/l3-euryale-70b",
@@ -13781,9 +14820,7 @@
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
- "min_p",
"presence_penalty",
"repetition_penalty",
"seed",
@@ -13791,157 +14828,8 @@
"temperature",
"top_k",
"top_p"
- ]
- },
- {
- "id": "nousresearch/hermes-2-pro-llama-3-8b",
- "canonical_slug": "nousresearch/hermes-2-pro-llama-3-8b",
- "hugging_face_id": "NousResearch/Hermes-2-Pro-Llama-3-8B",
- "name": "NousResearch: Hermes 2 Pro - Llama-3 8B",
- "created": 1716768000,
- "description": "Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.",
- "context_length": 131072,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "chatml"
- },
- "pricing": {
- "prompt": "0.000000025",
- "completion": "0.00000004",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 131072,
- "max_completion_tokens": 131072,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "top_k",
- "top_logprobs",
- "top_p"
- ]
- },
- {
- "id": "mistralai/mistral-7b-instruct:free",
- "canonical_slug": "mistralai/mistral-7b-instruct",
- "hugging_face_id": "mistralai/Mistral-7B-Instruct-v0.3",
- "name": "Mistral: Mistral 7B Instruct (free)",
- "created": 1716768000,
- "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\n*Mistral 7B Instruct has multiple version variants, and this is intended to be the latest version.*",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Mistral",
- "instruct_type": "mistral"
- },
- "pricing": {
- "prompt": "0",
- "completion": "0",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": 16384,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_p"
- ]
- },
- {
- "id": "mistralai/mistral-7b-instruct",
- "canonical_slug": "mistralai/mistral-7b-instruct",
- "hugging_face_id": "mistralai/Mistral-7B-Instruct-v0.3",
- "name": "Mistral: Mistral 7B Instruct",
- "created": 1716768000,
- "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\n*Mistral 7B Instruct has multiple version variants, and this is intended to be the latest version.*",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Mistral",
- "instruct_type": "mistral"
- },
- "pricing": {
- "prompt": "0.000000028",
- "completion": "0.000000054",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": 16384,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "response_format",
- "seed",
- "stop",
- "temperature",
- "tool_choice",
- "tools",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-7b-instruct-v0.3",
@@ -13991,7 +14879,163 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
+ },
+ {
+ "id": "nousresearch/hermes-2-pro-llama-3-8b",
+ "canonical_slug": "nousresearch/hermes-2-pro-llama-3-8b",
+ "hugging_face_id": "NousResearch/Hermes-2-Pro-Llama-3-8B",
+ "name": "NousResearch: Hermes 2 Pro - Llama-3 8B",
+ "created": 1716768000,
+ "description": "Hermes 2 Pro is an upgraded, retrained version of Nous Hermes 2, consisting of an updated and cleaned version of the OpenHermes 2.5 Dataset, as well as a newly introduced Function Calling and JSON Mode dataset developed in-house.",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": "chatml"
+ },
+ "pricing": {
+ "prompt": "0.000000025",
+ "completion": "0.00000008",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "max_tokens",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "mistralai/mistral-7b-instruct:free",
+ "canonical_slug": "mistralai/mistral-7b-instruct",
+ "hugging_face_id": "mistralai/Mistral-7B-Instruct-v0.3",
+ "name": "Mistral: Mistral 7B Instruct (free)",
+ "created": 1716768000,
+ "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\n*Mistral 7B Instruct has multiple version variants, and this is intended to be the latest version.*",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Mistral",
+ "instruct_type": "mistral"
+ },
+ "pricing": {
+ "prompt": "0",
+ "completion": "0",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": 16384,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
+ },
+ {
+ "id": "mistralai/mistral-7b-instruct",
+ "canonical_slug": "mistralai/mistral-7b-instruct",
+ "hugging_face_id": "mistralai/Mistral-7B-Instruct-v0.3",
+ "name": "Mistral: Mistral 7B Instruct",
+ "created": 1716768000,
+ "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\n*Mistral 7B Instruct has multiple version variants, and this is intended to be the latest version.*",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Mistral",
+ "instruct_type": "mistral"
+ },
+ "pricing": {
+ "prompt": "0.000000028",
+ "completion": "0.000000054",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": 16384,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "microsoft/phi-3-mini-128k-instruct",
@@ -14032,7 +15076,8 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "microsoft/phi-3-medium-128k-instruct",
@@ -14073,103 +15118,8 @@
"tool_choice",
"tools",
"top_p"
- ]
- },
- {
- "id": "neversleep/llama-3-lumimaid-70b",
- "canonical_slug": "neversleep/llama-3-lumimaid-70b",
- "hugging_face_id": "NeverSleep/Llama-3-Lumimaid-70B-v0.1",
- "name": "NeverSleep: Llama 3 Lumimaid 70B",
- "created": 1715817600,
- "description": "The NeverSleep team is back, with a Llama 3 70B finetune trained on their curated roleplay data. Striking a balance between eRP and RP, Lumimaid was designed to be serious, yet uncensored when necessary.\n\nTo enhance it's overall intelligence and chat capability, roughly 40% of the training data was not roleplay. This provides a breadth of knowledge to access, while still keeping roleplay as the primary strength.\n\nUsage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
- "context_length": 8192,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "llama3"
- },
- "pricing": {
- "prompt": "0.000004",
- "completion": "0.000006",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 8192,
- "max_completion_tokens": 4096,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "seed",
- "stop",
- "temperature",
- "top_k",
- "top_p"
- ]
- },
- {
- "id": "google/gemini-flash-1.5",
- "canonical_slug": "google/gemini-flash-1.5",
- "hugging_face_id": null,
- "name": "Google: Gemini 1.5 Flash ",
- "created": 1715644800,
- "description": "Gemini 1.5 Flash is a foundation model that performs well at a variety of multimodal tasks such as visual understanding, classification, summarization, and creating content from image, audio and video. It's adept at processing visual and text inputs such as photographs, documents, infographics, and screenshots.\n\nGemini 1.5 Flash is designed for high-volume, high-frequency tasks where cost and latency matter. On most common tasks, Flash achieves comparable quality to other Gemini Pro models at a significantly reduced cost. Flash is well-suited for applications like chat assistants and on-demand content generation where speed and scale matter.\n\nUsage of Gemini is subject to Google's [Gemini Terms of Use](https://ai.google.dev/terms).\n\n#multimodal",
- "context_length": 1000000,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Gemini",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.000000075",
- "completion": "0.0000003",
- "request": "0",
- "image": "0.00004",
- "web_search": "0",
- "internal_reasoning": "0",
- "input_cache_read": "0.00000001875",
- "input_cache_write": "0.0000001583"
- },
- "top_provider": {
- "context_length": 1000000,
- "max_completion_tokens": 8192,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o",
@@ -14223,7 +15173,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o:extended",
@@ -14276,53 +15227,8 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
- },
- {
- "id": "meta-llama/llama-guard-2-8b",
- "canonical_slug": "meta-llama/llama-guard-2-8b",
- "hugging_face_id": "meta-llama/Meta-Llama-Guard-2-8B",
- "name": "Meta: LlamaGuard 2 8B",
- "created": 1715558400,
- "description": "This safeguard model has 8B parameters and is based on the Llama 3 family. Just like is predecessor, [LlamaGuard 1](https://huggingface.co/meta-llama/LlamaGuard-7b), it can do both prompt and response classification.\n\nLlamaGuard 2 acts as a normal LLM would, generating text that indicates whether the given input/output is safe/unsafe. If deemed unsafe, it will also share the content categories violated.\n\nFor best results, please use raw prompt input or the `/completions` endpoint, instead of the chat API.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
- "context_length": 8192,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Llama3",
- "instruct_type": "none"
- },
- "pricing": {
- "prompt": "0.0000002",
- "completion": "0.0000002",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 8192,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "max_tokens",
- "min_p",
- "presence_penalty",
- "repetition_penalty",
- "stop",
- "temperature",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4o-2024-05-13",
@@ -14375,7 +15281,55 @@
"top_logprobs",
"top_p",
"web_search_options"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "meta-llama/llama-guard-2-8b",
+ "canonical_slug": "meta-llama/llama-guard-2-8b",
+ "hugging_face_id": "meta-llama/Meta-Llama-Guard-2-8B",
+ "name": "Meta: LlamaGuard 2 8B",
+ "created": 1715558400,
+ "description": "This safeguard model has 8B parameters and is based on the Llama 3 family. Just like is predecessor, [LlamaGuard 1](https://huggingface.co/meta-llama/LlamaGuard-7b), it can do both prompt and response classification.\n\nLlamaGuard 2 acts as a normal LLM would, generating text that indicates whether the given input/output is safe/unsafe. If deemed unsafe, it will also share the content categories violated.\n\nFor best results, please use raw prompt input or the `/completions` endpoint, instead of the chat API.\n\nIt has demonstrated strong performance compared to leading closed-source models in human evaluations.\n\nTo read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).",
+ "context_length": 8192,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Llama3",
+ "instruct_type": "none"
+ },
+ "pricing": {
+ "prompt": "0.0000002",
+ "completion": "0.0000002",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 8192,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3-8b-instruct",
@@ -14425,7 +15379,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "meta-llama/llama-3-70b-instruct",
@@ -14477,7 +15432,8 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mixtral-8x22b-instruct",
@@ -14529,7 +15485,10 @@
"top_k",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "microsoft/wizardlm-2-8x22b",
@@ -14560,13 +15519,12 @@
},
"top_provider": {
"context_length": 65536,
- "max_completion_tokens": 65536,
+ "max_completion_tokens": 16384,
"is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
- "logit_bias",
"max_tokens",
"min_p",
"presence_penalty",
@@ -14577,55 +15535,8 @@
"temperature",
"top_k",
"top_p"
- ]
- },
- {
- "id": "google/gemini-pro-1.5",
- "canonical_slug": "google/gemini-pro-1.5",
- "hugging_face_id": null,
- "name": "Google: Gemini 1.5 Pro",
- "created": 1712620800,
- "description": "Google's latest multimodal model, supports image and video[0] in text or chat prompts.\n\nOptimized for language tasks including:\n\n- Code generation\n- Text generation\n- Text editing\n- Problem solving\n- Recommendations\n- Information extraction\n- Data extraction or generation\n- AI agents\n\nUsage of Gemini is subject to Google's [Gemini Terms of Use](https://ai.google.dev/terms).\n\n* [0]: Video input is not available through OpenRouter at this time.",
- "context_length": 2000000,
- "architecture": {
- "modality": "text+image->text",
- "input_modalities": [
- "text",
- "image"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Gemini",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.00000125",
- "completion": "0.000005",
- "request": "0",
- "image": "0.0006575",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 2000000,
- "max_completion_tokens": 8192,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4-turbo",
@@ -14676,194 +15587,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "cohere/command-r-plus",
- "canonical_slug": "cohere/command-r-plus",
- "hugging_face_id": null,
- "name": "Cohere: Command R+",
- "created": 1712188800,
- "description": "Command R+ is a new, 104B-parameter LLM from Cohere. It's useful for roleplay, general consumer usecases, and Retrieval Augmented Generation (RAG).\n\nIt offers multilingual support for ten key languages to facilitate global business operations. See benchmarks and the launch post [here](https://txt.cohere.com/command-r-plus-microsoft-azure/).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.000003",
- "completion": "0.000015",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tools",
- "top_k",
- "top_p"
- ]
- },
- {
- "id": "cohere/command-r-plus-04-2024",
- "canonical_slug": "cohere/command-r-plus-04-2024",
- "hugging_face_id": null,
- "name": "Cohere: Command R+ (04-2024)",
- "created": 1712016000,
- "description": "Command R+ is a new, 104B-parameter LLM from Cohere. It's useful for roleplay, general consumer usecases, and Retrieval Augmented Generation (RAG).\n\nIt offers multilingual support for ten key languages to facilitate global business operations. See benchmarks and the launch post [here](https://txt.cohere.com/command-r-plus-microsoft-azure/).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.000003",
- "completion": "0.000015",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tools",
- "top_k",
- "top_p"
- ]
- },
- {
- "id": "cohere/command",
- "canonical_slug": "cohere/command",
- "hugging_face_id": null,
- "name": "Cohere: Command",
- "created": 1710374400,
- "description": "Command is an instruction-following conversational model that performs language tasks with high quality, more reliably and with a longer context than our base generative models.\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 4096,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.000001",
- "completion": "0.000002",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 4096,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "top_k",
- "top_p"
- ]
- },
- {
- "id": "cohere/command-r",
- "canonical_slug": "cohere/command-r",
- "hugging_face_id": null,
- "name": "Cohere: Command R",
- "created": 1710374400,
- "description": "Command-R is a 35B parameter model that performs conversational language tasks at a higher quality, more reliably, and with a longer context than previous models. It can be used for complex workflows like code generation, retrieval augmented generation (RAG), tool use, and agents.\n\nRead the launch post [here](https://txt.cohere.com/command-r/).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000005",
- "completion": "0.0000015",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tools",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3-haiku",
@@ -14909,7 +15634,8 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "anthropic/claude-3-opus",
@@ -14955,54 +15681,8 @@
"tools",
"top_k",
"top_p"
- ]
- },
- {
- "id": "cohere/command-r-03-2024",
- "canonical_slug": "cohere/command-r-03-2024",
- "hugging_face_id": null,
- "name": "Cohere: Command R (03-2024)",
- "created": 1709341200,
- "description": "Command-R is a 35B parameter model that performs conversational language tasks at a higher quality, more reliably, and with a longer context than previous models. It can be used for complex workflows like code generation, retrieval augmented generation (RAG), tool use, and agents.\n\nRead the launch post [here](https://txt.cohere.com/command-r/).\n\nUse of this model is subject to Cohere's [Usage Policy](https://docs.cohere.com/docs/usage-policy) and [SaaS Agreement](https://cohere.com/saas-agreement).",
- "context_length": 128000,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Cohere",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000005",
- "completion": "0.0000015",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 128000,
- "max_completion_tokens": 4000,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tools",
- "top_k",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-large",
@@ -15049,7 +15729,10 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "openai/gpt-3.5-turbo-0613",
@@ -15099,7 +15782,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4-turbo-preview",
@@ -15149,54 +15833,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "mistralai/mistral-small",
- "canonical_slug": "mistralai/mistral-small",
- "hugging_face_id": null,
- "name": "Mistral Small",
- "created": 1704844800,
- "description": "With 22 billion parameters, Mistral Small v24.09 offers a convenient mid-point between (Mistral NeMo 12B)[/mistralai/mistral-nemo] and (Mistral Large 2)[/mistralai/mistral-large], providing a cost-effective solution that can be deployed across various platforms and environments. It has better reasoning, exhibits more capabilities, can produce and reason about code, and is multiligual, supporting English, French, German, Italian, and Spanish.",
- "context_length": 32768,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "Mistral",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.0000002",
- "completion": "0.0000006",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 32768,
- "max_completion_tokens": null,
- "is_moderated": false
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-tiny",
@@ -15243,7 +15881,109 @@
"tool_choice",
"tools",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
+ },
+ {
+ "id": "mistralai/mistral-small",
+ "canonical_slug": "mistralai/mistral-small",
+ "hugging_face_id": null,
+ "name": "Mistral Small",
+ "created": 1704844800,
+ "description": "With 22 billion parameters, Mistral Small v24.09 offers a convenient mid-point between (Mistral NeMo 12B)[/mistralai/mistral-nemo] and (Mistral Large 2)[/mistralai/mistral-large], providing a cost-effective solution that can be deployed across various platforms and environments. It has better reasoning, exhibits more capabilities, can produce and reason about code, and is multiligual, supporting English, French, German, Italian, and Spanish.",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Mistral",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.0000002",
+ "completion": "0.0000006",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
+ },
+ {
+ "id": "mistralai/mistral-7b-instruct-v0.2",
+ "canonical_slug": "mistralai/mistral-7b-instruct-v0.2",
+ "hugging_face_id": "mistralai/Mistral-7B-Instruct-v0.2",
+ "name": "Mistral: Mistral 7B Instruct v0.2",
+ "created": 1703721600,
+ "description": "A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length.\n\nAn improved version of [Mistral 7B Instruct](/modelsmistralai/mistral-7b-instruct-v0.1), with the following changes:\n\n- 32k context window (vs 8k context in v0.1)\n- Rope-theta = 1e6\n- No Sliding-Window Attention",
+ "context_length": 32768,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "Mistral",
+ "instruct_type": "mistral"
+ },
+ "pricing": {
+ "prompt": "0.0000002",
+ "completion": "0.0000002",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 32768,
+ "max_completion_tokens": null,
+ "is_moderated": false
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "max_tokens",
+ "min_p",
+ "presence_penalty",
+ "repetition_penalty",
+ "stop",
+ "temperature",
+ "top_k",
+ "top_p"
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "mistralai/mixtral-8x7b-instruct",
@@ -15265,8 +16005,8 @@
"instruct_type": "mistral"
},
"pricing": {
- "prompt": "0.0000004",
- "completion": "0.0000004",
+ "prompt": "0.00000054",
+ "completion": "0.00000054",
"request": "0",
"image": "0",
"web_search": "0",
@@ -15293,7 +16033,10 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
},
{
"id": "neversleep/noromaid-20b",
@@ -15331,6 +16074,7 @@
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -15342,8 +16086,10 @@
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "alpindale/goliath-120b",
@@ -15381,6 +16127,7 @@
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -15392,8 +16139,10 @@
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openrouter/auto",
@@ -15401,7 +16150,7 @@
"hugging_face_id": null,
"name": "Auto Router",
"created": 1699401600,
- "description": "Your prompt will be processed by a meta-model and routed to one of dozens of models (see below), optimizing for the best possible output.\n\nTo see which model was used, visit [Activity](/activity), or read the `model` attribute of the response. Your response will be priced at the same rate as the routed model.\n\nThe meta-model is powered by [Not Diamond](https://docs.notdiamond.ai/docs/how-not-diamond-works). Learn more in our [docs](/docs/model-routing).\n\nRequests will be routed to the following models:\n- [openai/gpt-4o-2024-08-06](/openai/gpt-4o-2024-08-06)\n- [openai/gpt-4o-2024-05-13](/openai/gpt-4o-2024-05-13)\n- [openai/gpt-4o-mini-2024-07-18](/openai/gpt-4o-mini-2024-07-18)\n- [openai/chatgpt-4o-latest](/openai/chatgpt-4o-latest)\n- [openai/o1-preview-2024-09-12](/openai/o1-preview-2024-09-12)\n- [openai/o1-mini-2024-09-12](/openai/o1-mini-2024-09-12)\n- [anthropic/claude-3.5-sonnet](/anthropic/claude-3.5-sonnet)\n- [anthropic/claude-3.5-haiku](/anthropic/claude-3.5-haiku)\n- [anthropic/claude-3-opus](/anthropic/claude-3-opus)\n- [anthropic/claude-2.1](/anthropic/claude-2.1)\n- [google/gemini-pro-1.5](/google/gemini-pro-1.5)\n- [google/gemini-flash-1.5](/google/gemini-flash-1.5)\n- [mistralai/mistral-large-2407](/mistralai/mistral-large-2407)\n- [mistralai/mistral-nemo](/mistralai/mistral-nemo)\n- [deepseek/deepseek-r1](/deepseek/deepseek-r1)\n- [meta-llama/llama-3.1-70b-instruct](/meta-llama/llama-3.1-70b-instruct)\n- [meta-llama/llama-3.1-405b-instruct](/meta-llama/llama-3.1-405b-instruct)\n- [mistralai/mixtral-8x22b-instruct](/mistralai/mixtral-8x22b-instruct)\n- [cohere/command-r-plus](/cohere/command-r-plus)\n- [cohere/command-r](/cohere/command-r)",
+ "description": "Your prompt will be processed by a meta-model and routed to one of dozens of models (see below), optimizing for the best possible output.\n\nTo see which model was used, visit [Activity](/activity), or read the `model` attribute of the response. Your response will be priced at the same rate as the routed model.\n\nThe meta-model is powered by [Not Diamond](https://docs.notdiamond.ai/docs/how-not-diamond-works). Learn more in our [docs](/docs/model-routing).\n\nRequests will be routed to the following models:\n- [openai/gpt-5](/openai/gpt-5)\n- [openai/gpt-5-mini](/openai/gpt-5-mini)\n- [openai/gpt-5-nano](/openai/gpt-5-nano)\n- [openai/gpt-4.1-nano](/openai/gpt-4.1-nano)\n- [openai/gpt-4.1](/openai/gpt-4.1)\n- [openai/gpt-4.1-mini](/openai/gpt-4.1-mini)\n- [openai/gpt-4.1](/openai/gpt-4.1)\n- [openai/gpt-4o-mini](/openai/gpt-4o-mini)\n- [openai/chatgpt-4o-latest](/openai/chatgpt-4o-latest)\n- [anthropic/claude-3.5-haiku](/anthropic/claude-3.5-haiku)\n- [anthropic/claude-opus-4-1](/anthropic/claude-opus-4-1)\n- [anthropic/claude-sonnet-4-0](/anthropic/claude-sonnet-4-0)\n- [anthropic/claude-3-7-sonnet-latest](/anthropic/claude-3-7-sonnet-latest)\n- [google/gemini-2.5-pro](/google/gemini-2.5-pro)\n- [google/gemini-2.5-flash](/google/gemini-2.5-flash)\n- [mistral/mistral-large-latest](/mistral/mistral-large-latest)\n- [mistral/mistral-medium-latest](/mistral/mistral-medium-latest)\n- [mistral/mistral-small-latest](/mistral/mistral-small-latest)\n- [mistralai/mistral-nemo](/mistralai/mistral-nemo)\n- [x-ai/grok-3](/x-ai/grok-3)\n- [x-ai/grok-3-mini](/x-ai/grok-3-mini)\n- [x-ai/grok-4](/x-ai/grok-4)\n- [deepseek/deepseek-r1](/deepseek/deepseek-r1)\n- [meta-llama/llama-3.1-70b-instruct](/meta-llama/llama-3.1-70b-instruct)\n- [meta-llama/llama-3.1-405b-instruct](/meta-llama/llama-3.1-405b-instruct)\n- [mistralai/mixtral-8x22b-instruct](/mistralai/mixtral-8x22b-instruct)\n- [perplexity/sonar](/perplexity/sonar)\n- [cohere/command-r-plus](/cohere/command-r-plus)\n- [cohere/command-r](/cohere/command-r)",
"context_length": 2000000,
"architecture": {
"modality": "text->text",
@@ -15424,7 +16173,8 @@
"is_moderated": false
},
"per_request_limits": null,
- "supported_parameters": []
+ "supported_parameters": [],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4-1106-preview",
@@ -15474,55 +16224,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "openai/gpt-3.5-turbo-instruct",
- "canonical_slug": "openai/gpt-3.5-turbo-instruct",
- "hugging_face_id": null,
- "name": "OpenAI: GPT-3.5 Turbo Instruct",
- "created": 1695859200,
- "description": "This model is a variant of GPT-3.5 Turbo tuned for instructional prompts and omitting chat-related optimizations. Training data: up to Sep 2021.",
- "context_length": 4095,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "GPT",
- "instruct_type": "chatml"
- },
- "pricing": {
- "prompt": "0.0000015",
- "completion": "0.000002",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 4095,
- "max_completion_tokens": 4096,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mistralai/mistral-7b-instruct-v0.1",
@@ -15571,7 +16274,59 @@
"tools",
"top_k",
"top_p"
- ]
+ ],
+ "default_parameters": {
+ "temperature": 0.3
+ }
+ },
+ {
+ "id": "openai/gpt-3.5-turbo-instruct",
+ "canonical_slug": "openai/gpt-3.5-turbo-instruct",
+ "hugging_face_id": null,
+ "name": "OpenAI: GPT-3.5 Turbo Instruct",
+ "created": 1695859200,
+ "description": "This model is a variant of GPT-3.5 Turbo tuned for instructional prompts and omitting chat-related optimizations. Training data: up to Sep 2021.",
+ "context_length": 4095,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "GPT",
+ "instruct_type": "chatml"
+ },
+ "pricing": {
+ "prompt": "0.0000015",
+ "completion": "0.000002",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 4095,
+ "max_completion_tokens": 4096,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-3.5-turbo-16k",
@@ -15621,7 +16376,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "mancer/weaver",
@@ -15659,17 +16415,22 @@
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
"repetition_penalty",
+ "response_format",
"seed",
"stop",
+ "structured_outputs",
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "undi95/remm-slerp-l2-13b",
@@ -15707,6 +16468,7 @@
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -15718,8 +16480,10 @@
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "gryphe/mythomax-l2-13b",
@@ -15741,8 +16505,8 @@
"instruct_type": "alpaca"
},
"pricing": {
- "prompt": "0.00000006",
- "completion": "0.00000006",
+ "prompt": "0.00000005",
+ "completion": "0.00000009",
"request": "0",
"image": "0",
"web_search": "0",
@@ -15750,13 +16514,14 @@
},
"top_provider": {
"context_length": 4096,
- "max_completion_tokens": null,
+ "max_completion_tokens": 4096,
"is_moderated": false
},
"per_request_limits": null,
"supported_parameters": [
"frequency_penalty",
"logit_bias",
+ "logprobs",
"max_tokens",
"min_p",
"presence_penalty",
@@ -15768,8 +16533,10 @@
"temperature",
"top_a",
"top_k",
+ "top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-3.5-turbo",
@@ -15819,57 +16586,8 @@
"tools",
"top_logprobs",
"top_p"
- ]
- },
- {
- "id": "openai/gpt-4",
- "canonical_slug": "openai/gpt-4",
- "hugging_face_id": null,
- "name": "OpenAI: GPT-4",
- "created": 1685232000,
- "description": "OpenAI's flagship model, GPT-4 is a large-scale multimodal language model capable of solving difficult problems with greater accuracy than previous models due to its broader general knowledge and advanced reasoning capabilities. Training data: up to Sep 2021.",
- "context_length": 8191,
- "architecture": {
- "modality": "text->text",
- "input_modalities": [
- "text"
- ],
- "output_modalities": [
- "text"
- ],
- "tokenizer": "GPT",
- "instruct_type": null
- },
- "pricing": {
- "prompt": "0.00003",
- "completion": "0.00006",
- "request": "0",
- "image": "0",
- "web_search": "0",
- "internal_reasoning": "0"
- },
- "top_provider": {
- "context_length": 8191,
- "max_completion_tokens": 4096,
- "is_moderated": true
- },
- "per_request_limits": null,
- "supported_parameters": [
- "frequency_penalty",
- "logit_bias",
- "logprobs",
- "max_tokens",
- "presence_penalty",
- "response_format",
- "seed",
- "stop",
- "structured_outputs",
- "temperature",
- "tool_choice",
- "tools",
- "top_logprobs",
- "top_p"
- ]
+ ],
+ "default_parameters": {}
},
{
"id": "openai/gpt-4-0314",
@@ -15919,7 +16637,59 @@
"tools",
"top_logprobs",
"top_p"
- ]
+ ],
+ "default_parameters": {}
+ },
+ {
+ "id": "openai/gpt-4",
+ "canonical_slug": "openai/gpt-4",
+ "hugging_face_id": null,
+ "name": "OpenAI: GPT-4",
+ "created": 1685232000,
+ "description": "OpenAI's flagship model, GPT-4 is a large-scale multimodal language model capable of solving difficult problems with greater accuracy than previous models due to its broader general knowledge and advanced reasoning capabilities. Training data: up to Sep 2021.",
+ "context_length": 8191,
+ "architecture": {
+ "modality": "text->text",
+ "input_modalities": [
+ "text"
+ ],
+ "output_modalities": [
+ "text"
+ ],
+ "tokenizer": "GPT",
+ "instruct_type": null
+ },
+ "pricing": {
+ "prompt": "0.00003",
+ "completion": "0.00006",
+ "request": "0",
+ "image": "0",
+ "web_search": "0",
+ "internal_reasoning": "0"
+ },
+ "top_provider": {
+ "context_length": 8191,
+ "max_completion_tokens": 4096,
+ "is_moderated": true
+ },
+ "per_request_limits": null,
+ "supported_parameters": [
+ "frequency_penalty",
+ "logit_bias",
+ "logprobs",
+ "max_tokens",
+ "presence_penalty",
+ "response_format",
+ "seed",
+ "stop",
+ "structured_outputs",
+ "temperature",
+ "tool_choice",
+ "tools",
+ "top_logprobs",
+ "top_p"
+ ],
+ "default_parameters": {}
}
]
}
\ No newline at end of file
diff --git a/packages/kbot/dist-in/src/models/cache/openai.ts b/packages/kbot/dist-in/src/models/cache/openai.ts
index 251ea3da..5c8b82e1 100644
--- a/packages/kbot/dist-in/src/models/cache/openai.ts
+++ b/packages/kbot/dist-in/src/models/cache/openai.ts
@@ -1 +1 @@
-export const models = [{"id":"gpt-4-0613","object":"model","created":1686588896,"owned_by":"openai"},{"id":"gpt-4","object":"model","created":1687882411,"owned_by":"openai"},{"id":"gpt-3.5-turbo","object":"model","created":1677610602,"owned_by":"openai"},{"id":"gpt-audio","object":"model","created":1756339249,"owned_by":"system"},{"id":"gpt-5-nano","object":"model","created":1754426384,"owned_by":"system"},{"id":"gpt-audio-2025-08-28","object":"model","created":1756256146,"owned_by":"system"},{"id":"gpt-realtime","object":"model","created":1756271701,"owned_by":"system"},{"id":"gpt-realtime-2025-08-28","object":"model","created":1756271773,"owned_by":"system"},{"id":"davinci-002","object":"model","created":1692634301,"owned_by":"system"},{"id":"babbage-002","object":"model","created":1692634615,"owned_by":"system"},{"id":"gpt-3.5-turbo-instruct","object":"model","created":1692901427,"owned_by":"system"},{"id":"gpt-3.5-turbo-instruct-0914","object":"model","created":1694122472,"owned_by":"system"},{"id":"dall-e-3","object":"model","created":1698785189,"owned_by":"system"},{"id":"dall-e-2","object":"model","created":1698798177,"owned_by":"system"},{"id":"gpt-4-1106-preview","object":"model","created":1698957206,"owned_by":"system"},{"id":"gpt-3.5-turbo-1106","object":"model","created":1698959748,"owned_by":"system"},{"id":"tts-1-hd","object":"model","created":1699046015,"owned_by":"system"},{"id":"tts-1-1106","object":"model","created":1699053241,"owned_by":"system"},{"id":"tts-1-hd-1106","object":"model","created":1699053533,"owned_by":"system"},{"id":"text-embedding-3-small","object":"model","created":1705948997,"owned_by":"system"},{"id":"text-embedding-3-large","object":"model","created":1705953180,"owned_by":"system"},{"id":"gpt-4-0125-preview","object":"model","created":1706037612,"owned_by":"system"},{"id":"gpt-4-turbo-preview","object":"model","created":1706037777,"owned_by":"system"},{"id":"gpt-3.5-turbo-0125","object":"model","created":1706048358,"owned_by":"system"},{"id":"gpt-4-turbo","object":"model","created":1712361441,"owned_by":"system"},{"id":"gpt-4-turbo-2024-04-09","object":"model","created":1712601677,"owned_by":"system"},{"id":"gpt-4o","object":"model","created":1715367049,"owned_by":"system"},{"id":"gpt-4o-2024-05-13","object":"model","created":1715368132,"owned_by":"system"},{"id":"gpt-4o-mini-2024-07-18","object":"model","created":1721172717,"owned_by":"system"},{"id":"gpt-4o-mini","object":"model","created":1721172741,"owned_by":"system"},{"id":"gpt-4o-2024-08-06","object":"model","created":1722814719,"owned_by":"system"},{"id":"chatgpt-4o-latest","object":"model","created":1723515131,"owned_by":"system"},{"id":"o1-mini-2024-09-12","object":"model","created":1725648979,"owned_by":"system"},{"id":"o1-mini","object":"model","created":1725649008,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2024-10-01","object":"model","created":1727131766,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2024-10-01","object":"model","created":1727389042,"owned_by":"system"},{"id":"gpt-4o-audio-preview","object":"model","created":1727460443,"owned_by":"system"},{"id":"gpt-4o-realtime-preview","object":"model","created":1727659998,"owned_by":"system"},{"id":"omni-moderation-latest","object":"model","created":1731689265,"owned_by":"system"},{"id":"omni-moderation-2024-09-26","object":"model","created":1732734466,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2024-12-17","object":"model","created":1733945430,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2024-12-17","object":"model","created":1734034239,"owned_by":"system"},{"id":"gpt-4o-mini-realtime-preview-2024-12-17","object":"model","created":1734112601,"owned_by":"system"},{"id":"gpt-4o-mini-audio-preview-2024-12-17","object":"model","created":1734115920,"owned_by":"system"},{"id":"o1-2024-12-17","object":"model","created":1734326976,"owned_by":"system"},{"id":"o1","object":"model","created":1734375816,"owned_by":"system"},{"id":"gpt-4o-mini-realtime-preview","object":"model","created":1734387380,"owned_by":"system"},{"id":"gpt-4o-mini-audio-preview","object":"model","created":1734387424,"owned_by":"system"},{"id":"o3-mini","object":"model","created":1737146383,"owned_by":"system"},{"id":"o3-mini-2025-01-31","object":"model","created":1738010200,"owned_by":"system"},{"id":"gpt-4o-2024-11-20","object":"model","created":1739331543,"owned_by":"system"},{"id":"gpt-4o-search-preview-2025-03-11","object":"model","created":1741388170,"owned_by":"system"},{"id":"gpt-4o-search-preview","object":"model","created":1741388720,"owned_by":"system"},{"id":"gpt-4o-mini-search-preview-2025-03-11","object":"model","created":1741390858,"owned_by":"system"},{"id":"gpt-4o-mini-search-preview","object":"model","created":1741391161,"owned_by":"system"},{"id":"gpt-4o-transcribe","object":"model","created":1742068463,"owned_by":"system"},{"id":"gpt-4o-mini-transcribe","object":"model","created":1742068596,"owned_by":"system"},{"id":"o1-pro-2025-03-19","object":"model","created":1742251504,"owned_by":"system"},{"id":"o1-pro","object":"model","created":1742251791,"owned_by":"system"},{"id":"gpt-4o-mini-tts","object":"model","created":1742403959,"owned_by":"system"},{"id":"o3-2025-04-16","object":"model","created":1744133301,"owned_by":"system"},{"id":"o4-mini-2025-04-16","object":"model","created":1744133506,"owned_by":"system"},{"id":"o3","object":"model","created":1744225308,"owned_by":"system"},{"id":"o4-mini","object":"model","created":1744225351,"owned_by":"system"},{"id":"gpt-4.1-2025-04-14","object":"model","created":1744315746,"owned_by":"system"},{"id":"gpt-4.1","object":"model","created":1744316542,"owned_by":"system"},{"id":"gpt-4.1-mini-2025-04-14","object":"model","created":1744317547,"owned_by":"system"},{"id":"gpt-4.1-mini","object":"model","created":1744318173,"owned_by":"system"},{"id":"gpt-4.1-nano-2025-04-14","object":"model","created":1744321025,"owned_by":"system"},{"id":"gpt-4.1-nano","object":"model","created":1744321707,"owned_by":"system"},{"id":"gpt-image-1","object":"model","created":1745517030,"owned_by":"system"},{"id":"codex-mini-latest","object":"model","created":1746673257,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2025-06-03","object":"model","created":1748907838,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2025-06-03","object":"model","created":1748908498,"owned_by":"system"},{"id":"o4-mini-deep-research","object":"model","created":1749685485,"owned_by":"system"},{"id":"o4-mini-deep-research-2025-06-26","object":"model","created":1750866121,"owned_by":"system"},{"id":"gpt-5-chat-latest","object":"model","created":1754073306,"owned_by":"system"},{"id":"gpt-5-2025-08-07","object":"model","created":1754075360,"owned_by":"system"},{"id":"gpt-5","object":"model","created":1754425777,"owned_by":"system"},{"id":"gpt-5-mini-2025-08-07","object":"model","created":1754425867,"owned_by":"system"},{"id":"gpt-5-mini","object":"model","created":1754425928,"owned_by":"system"},{"id":"gpt-5-nano-2025-08-07","object":"model","created":1754426303,"owned_by":"system"},{"id":"gpt-3.5-turbo-16k","object":"model","created":1683758102,"owned_by":"openai-internal"},{"id":"tts-1","object":"model","created":1681940951,"owned_by":"openai-internal"},{"id":"whisper-1","object":"model","created":1677532384,"owned_by":"openai-internal"},{"id":"text-embedding-ada-002","object":"model","created":1671217299,"owned_by":"openai-internal"}]
\ No newline at end of file
+export const models = [{"id":"gpt-4-0613","object":"model","created":1686588896,"owned_by":"openai"},{"id":"gpt-4","object":"model","created":1687882411,"owned_by":"openai"},{"id":"gpt-3.5-turbo","object":"model","created":1677610602,"owned_by":"openai"},{"id":"sora-2-pro","object":"model","created":1759708663,"owned_by":"system"},{"id":"gpt-audio-mini-2025-10-06","object":"model","created":1759512137,"owned_by":"system"},{"id":"gpt-realtime-mini","object":"model","created":1759517133,"owned_by":"system"},{"id":"gpt-realtime-mini-2025-10-06","object":"model","created":1759517175,"owned_by":"system"},{"id":"sora-2","object":"model","created":1759708615,"owned_by":"system"},{"id":"davinci-002","object":"model","created":1692634301,"owned_by":"system"},{"id":"babbage-002","object":"model","created":1692634615,"owned_by":"system"},{"id":"gpt-3.5-turbo-instruct","object":"model","created":1692901427,"owned_by":"system"},{"id":"gpt-3.5-turbo-instruct-0914","object":"model","created":1694122472,"owned_by":"system"},{"id":"dall-e-3","object":"model","created":1698785189,"owned_by":"system"},{"id":"dall-e-2","object":"model","created":1698798177,"owned_by":"system"},{"id":"gpt-4-1106-preview","object":"model","created":1698957206,"owned_by":"system"},{"id":"gpt-3.5-turbo-1106","object":"model","created":1698959748,"owned_by":"system"},{"id":"tts-1-hd","object":"model","created":1699046015,"owned_by":"system"},{"id":"tts-1-1106","object":"model","created":1699053241,"owned_by":"system"},{"id":"tts-1-hd-1106","object":"model","created":1699053533,"owned_by":"system"},{"id":"text-embedding-3-small","object":"model","created":1705948997,"owned_by":"system"},{"id":"text-embedding-3-large","object":"model","created":1705953180,"owned_by":"system"},{"id":"gpt-4-0125-preview","object":"model","created":1706037612,"owned_by":"system"},{"id":"gpt-4-turbo-preview","object":"model","created":1706037777,"owned_by":"system"},{"id":"gpt-3.5-turbo-0125","object":"model","created":1706048358,"owned_by":"system"},{"id":"gpt-4-turbo","object":"model","created":1712361441,"owned_by":"system"},{"id":"gpt-4-turbo-2024-04-09","object":"model","created":1712601677,"owned_by":"system"},{"id":"gpt-4o","object":"model","created":1715367049,"owned_by":"system"},{"id":"gpt-4o-2024-05-13","object":"model","created":1715368132,"owned_by":"system"},{"id":"gpt-4o-mini-2024-07-18","object":"model","created":1721172717,"owned_by":"system"},{"id":"gpt-4o-mini","object":"model","created":1721172741,"owned_by":"system"},{"id":"gpt-4o-2024-08-06","object":"model","created":1722814719,"owned_by":"system"},{"id":"chatgpt-4o-latest","object":"model","created":1723515131,"owned_by":"system"},{"id":"o1-mini-2024-09-12","object":"model","created":1725648979,"owned_by":"system"},{"id":"o1-mini","object":"model","created":1725649008,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2024-10-01","object":"model","created":1727131766,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2024-10-01","object":"model","created":1727389042,"owned_by":"system"},{"id":"gpt-4o-audio-preview","object":"model","created":1727460443,"owned_by":"system"},{"id":"gpt-4o-realtime-preview","object":"model","created":1727659998,"owned_by":"system"},{"id":"omni-moderation-latest","object":"model","created":1731689265,"owned_by":"system"},{"id":"omni-moderation-2024-09-26","object":"model","created":1732734466,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2024-12-17","object":"model","created":1733945430,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2024-12-17","object":"model","created":1734034239,"owned_by":"system"},{"id":"gpt-4o-mini-realtime-preview-2024-12-17","object":"model","created":1734112601,"owned_by":"system"},{"id":"gpt-4o-mini-audio-preview-2024-12-17","object":"model","created":1734115920,"owned_by":"system"},{"id":"o1-2024-12-17","object":"model","created":1734326976,"owned_by":"system"},{"id":"o1","object":"model","created":1734375816,"owned_by":"system"},{"id":"gpt-4o-mini-realtime-preview","object":"model","created":1734387380,"owned_by":"system"},{"id":"gpt-4o-mini-audio-preview","object":"model","created":1734387424,"owned_by":"system"},{"id":"o3-mini","object":"model","created":1737146383,"owned_by":"system"},{"id":"o3-mini-2025-01-31","object":"model","created":1738010200,"owned_by":"system"},{"id":"gpt-4o-2024-11-20","object":"model","created":1739331543,"owned_by":"system"},{"id":"gpt-4o-search-preview-2025-03-11","object":"model","created":1741388170,"owned_by":"system"},{"id":"gpt-4o-search-preview","object":"model","created":1741388720,"owned_by":"system"},{"id":"gpt-4o-mini-search-preview-2025-03-11","object":"model","created":1741390858,"owned_by":"system"},{"id":"gpt-4o-mini-search-preview","object":"model","created":1741391161,"owned_by":"system"},{"id":"gpt-4o-transcribe","object":"model","created":1742068463,"owned_by":"system"},{"id":"gpt-4o-mini-transcribe","object":"model","created":1742068596,"owned_by":"system"},{"id":"o1-pro-2025-03-19","object":"model","created":1742251504,"owned_by":"system"},{"id":"o1-pro","object":"model","created":1742251791,"owned_by":"system"},{"id":"gpt-4o-mini-tts","object":"model","created":1742403959,"owned_by":"system"},{"id":"o3-2025-04-16","object":"model","created":1744133301,"owned_by":"system"},{"id":"o4-mini-2025-04-16","object":"model","created":1744133506,"owned_by":"system"},{"id":"o3","object":"model","created":1744225308,"owned_by":"system"},{"id":"o4-mini","object":"model","created":1744225351,"owned_by":"system"},{"id":"gpt-4.1-2025-04-14","object":"model","created":1744315746,"owned_by":"system"},{"id":"gpt-4.1","object":"model","created":1744316542,"owned_by":"system"},{"id":"gpt-4.1-mini-2025-04-14","object":"model","created":1744317547,"owned_by":"system"},{"id":"gpt-4.1-mini","object":"model","created":1744318173,"owned_by":"system"},{"id":"gpt-4.1-nano-2025-04-14","object":"model","created":1744321025,"owned_by":"system"},{"id":"gpt-4.1-nano","object":"model","created":1744321707,"owned_by":"system"},{"id":"gpt-image-1","object":"model","created":1745517030,"owned_by":"system"},{"id":"codex-mini-latest","object":"model","created":1746673257,"owned_by":"system"},{"id":"gpt-4o-realtime-preview-2025-06-03","object":"model","created":1748907838,"owned_by":"system"},{"id":"gpt-4o-audio-preview-2025-06-03","object":"model","created":1748908498,"owned_by":"system"},{"id":"o4-mini-deep-research","object":"model","created":1749685485,"owned_by":"system"},{"id":"o4-mini-deep-research-2025-06-26","object":"model","created":1750866121,"owned_by":"system"},{"id":"gpt-5-chat-latest","object":"model","created":1754073306,"owned_by":"system"},{"id":"gpt-5-2025-08-07","object":"model","created":1754075360,"owned_by":"system"},{"id":"gpt-5","object":"model","created":1754425777,"owned_by":"system"},{"id":"gpt-5-mini-2025-08-07","object":"model","created":1754425867,"owned_by":"system"},{"id":"gpt-5-mini","object":"model","created":1754425928,"owned_by":"system"},{"id":"gpt-5-nano-2025-08-07","object":"model","created":1754426303,"owned_by":"system"},{"id":"gpt-5-nano","object":"model","created":1754426384,"owned_by":"system"},{"id":"gpt-audio-2025-08-28","object":"model","created":1756256146,"owned_by":"system"},{"id":"gpt-realtime","object":"model","created":1756271701,"owned_by":"system"},{"id":"gpt-realtime-2025-08-28","object":"model","created":1756271773,"owned_by":"system"},{"id":"gpt-audio","object":"model","created":1756339249,"owned_by":"system"},{"id":"gpt-5-codex","object":"model","created":1757527818,"owned_by":"system"},{"id":"gpt-image-1-mini","object":"model","created":1758845821,"owned_by":"system"},{"id":"gpt-5-pro-2025-10-06","object":"model","created":1759469707,"owned_by":"system"},{"id":"gpt-5-pro","object":"model","created":1759469822,"owned_by":"system"},{"id":"gpt-audio-mini","object":"model","created":1759512027,"owned_by":"system"},{"id":"gpt-3.5-turbo-16k","object":"model","created":1683758102,"owned_by":"openai-internal"},{"id":"tts-1","object":"model","created":1681940951,"owned_by":"openai-internal"},{"id":"whisper-1","object":"model","created":1677532384,"owned_by":"openai-internal"},{"id":"text-embedding-ada-002","object":"model","created":1671217299,"owned_by":"openai-internal"}]
\ No newline at end of file
diff --git a/packages/kbot/dist-in/src/models/cache/openrouter.ts b/packages/kbot/dist-in/src/models/cache/openrouter.ts
index 1b0f7976..45fd73ba 100644
--- a/packages/kbot/dist-in/src/models/cache/openrouter.ts
+++ b/packages/kbot/dist-in/src/models/cache/openrouter.ts
@@ -1 +1 @@
-export const models = [{"id":"x-ai/grok-4-fast:free","name":"xAI: Grok 4 Fast (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758240090,"top_provider":{"context_length":2000000,"max_completion_tokens":30000,"is_moderated":false}},{"id":"alibaba/tongyi-deepresearch-30b-a3b","name":"Tongyi DeepResearch 30B A3B","pricing":{"prompt":"0.00000009","completion":"0.00000045","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758210804,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"qwen/qwen3-coder-flash","name":"Qwen: Qwen3 Coder Flash","pricing":{"prompt":"0.0000003","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000008"},"created":1758115536,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":false}},{"id":"qwen/qwen3-coder-plus","name":"Qwen: Qwen3 Coder Plus","pricing":{"prompt":"0.000001","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000001"},"created":1758115194,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":false}},{"id":"arcee-ai/afm-4.5b","name":"Arcee AI: AFM 4.5B","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758040484,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"opengvlab/internvl3-78b","name":"OpenGVLab: InternVL3 78B","pricing":{"prompt":"0.00000003","completion":"0.00000013","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757962555,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-next-80b-a3b-thinking","name":"Qwen: Qwen3 Next 80B A3B Thinking","pricing":{"prompt":"0.0000001","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757612284,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-next-80b-a3b-instruct","name":"Qwen: Qwen3 Next 80B A3B Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757612213,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"meituan/longcat-flash-chat","name":"Meituan: LongCat Flash Chat","pricing":{"prompt":"0.00000012","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757427658,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-plus-2025-07-28","name":"Qwen: Qwen Plus 0728","pricing":{"prompt":"0.0000004","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757347599,"top_provider":{"context_length":1000000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen-plus-2025-07-28:thinking","name":"Qwen: Qwen Plus 0728 (thinking)","pricing":{"prompt":"0.0000004","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757347599,"top_provider":{"context_length":1000000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"nvidia/nemotron-nano-9b-v2:free","name":"NVIDIA: Nemotron Nano 9B V2 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757106807,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/nemotron-nano-9b-v2","name":"NVIDIA: Nemotron Nano 9B V2","pricing":{"prompt":"0.00000004","completion":"0.00000016","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757106807,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-max","name":"Qwen: Qwen3 Max","pricing":{"prompt":"0.0000012","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000024"},"created":1757076567,"top_provider":{"context_length":256000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"moonshotai/kimi-k2-0905","name":"MoonshotAI: Kimi K2 0905","pricing":{"prompt":"0.00000038","completion":"0.00000152","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757021147,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"bytedance/seed-oss-36b-instruct","name":"ByteDance: Seed OSS 36B Instruct","pricing":{"prompt":"0.00000016","completion":"0.00000065","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756834704,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepcogito/cogito-v2-preview-llama-109b-moe","name":"Cogito V2 Preview Llama 109B","pricing":{"prompt":"0.00000018","completion":"0.00000059","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756831568,"top_provider":{"context_length":32767,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepcogito/cogito-v2-preview-deepseek-671b","name":"Deep Cogito: Cogito V2 Preview Deepseek 671B","pricing":{"prompt":"0.00000125","completion":"0.00000125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756830949,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"stepfun-ai/step3","name":"StepFun: Step3","pricing":{"prompt":"0.00000057","completion":"0.00000142","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756415375,"top_provider":{"context_length":65536,"max_completion_tokens":65536,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b-thinking-2507","name":"Qwen: Qwen3 30B A3B Thinking 2507","pricing":{"prompt":"0.00000008","completion":"0.00000029","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756399192,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"x-ai/grok-code-fast-1","name":"xAI: Grok Code Fast 1","pricing":{"prompt":"0.0000002","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000002"},"created":1756238927,"top_provider":{"context_length":256000,"max_completion_tokens":10000,"is_moderated":false}},{"id":"nousresearch/hermes-4-70b","name":"Nous: Hermes 4 70B","pricing":{"prompt":"0.00000011","completion":"0.00000038","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756236182,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/hermes-4-405b","name":"Nous: Hermes 4 405B","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756235463,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemini-2.5-flash-image-preview","name":"Google: Gemini 2.5 Flash Image Preview","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0"},"created":1756218977,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3.1:free","name":"DeepSeek: DeepSeek V3.1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755779628,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3.1","name":"DeepSeek: DeepSeek V3.1","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755779628,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-v3.1-base","name":"DeepSeek: DeepSeek V3.1 Base","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755727017,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o-audio-preview","name":"OpenAI: GPT-4o Audio","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","audio":"0.00004","web_search":"0","internal_reasoning":"0"},"created":1755233061,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"mistralai/mistral-medium-3.1","name":"Mistral: Mistral Medium 3.1","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755095639,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"baidu/ernie-4.5-21b-a3b","name":"Baidu: ERNIE 4.5 21B A3B","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755034167,"top_provider":{"context_length":120000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"baidu/ernie-4.5-vl-28b-a3b","name":"Baidu: ERNIE 4.5 VL 28B A3B","pricing":{"prompt":"0.00000014","completion":"0.00000056","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755032836,"top_provider":{"context_length":30000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"z-ai/glm-4.5v","name":"Z.AI: GLM 4.5V","pricing":{"prompt":"0.0000005","completion":"0.0000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754922288,"top_provider":{"context_length":65536,"max_completion_tokens":65536,"is_moderated":false}},{"id":"ai21/jamba-mini-1.7","name":"AI21: Jamba Mini 1.7","pricing":{"prompt":"0.0000002","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754670601,"top_provider":{"context_length":256000,"max_completion_tokens":4096,"is_moderated":false}},{"id":"ai21/jamba-large-1.7","name":"AI21: Jamba Large 1.7","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754669020,"top_provider":{"context_length":256000,"max_completion_tokens":4096,"is_moderated":false}},{"id":"openai/gpt-5-chat","name":"OpenAI: GPT-5 Chat","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000125"},"created":1754587837,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-5","name":"OpenAI: GPT-5","pricing":{"prompt":"0.000000625","completion":"0.000005","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0","input_cache_read":"0.0000000625"},"created":1754587413,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-5-mini","name":"OpenAI: GPT-5 Mini","pricing":{"prompt":"0.00000025","completion":"0.000002","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000025"},"created":1754587407,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-5-nano","name":"OpenAI: GPT-5 Nano","pricing":{"prompt":"0.00000005","completion":"0.0000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000005"},"created":1754587402,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-oss-120b:free","name":"OpenAI: gpt-oss-120b (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414231,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":true}},{"id":"openai/gpt-oss-120b","name":"OpenAI: gpt-oss-120b","pricing":{"prompt":"0.00000005","completion":"0.00000025","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414231,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-oss-20b:free","name":"OpenAI: gpt-oss-20b (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414229,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/gpt-oss-20b","name":"OpenAI: gpt-oss-20b","pricing":{"prompt":"0.00000003","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414229,"top_provider":{"context_length":131072,"max_completion_tokens":32768,"is_moderated":false}},{"id":"anthropic/claude-opus-4.1","name":"Anthropic: Claude Opus 4.1","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1754411591,"top_provider":{"context_length":200000,"max_completion_tokens":32000,"is_moderated":true}},{"id":"mistralai/codestral-2508","name":"Mistral: Codestral 2508","pricing":{"prompt":"0.0000003","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754079630,"top_provider":{"context_length":256000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder-30b-a3b-instruct","name":"Qwen: Qwen3 Coder 30B A3B Instruct","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753972379,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b-instruct-2507","name":"Qwen: Qwen3 30B A3B Instruct 2507","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753806965,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"z-ai/glm-4.5","name":"Z.AI: GLM 4.5","pricing":{"prompt":"0.00000041","completion":"0.00000165","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471347,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"z-ai/glm-4.5-air:free","name":"Z.AI: GLM 4.5 Air (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471258,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"z-ai/glm-4.5-air","name":"Z.AI: GLM 4.5 Air","pricing":{"prompt":"0.00000014","completion":"0.00000086","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471258,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b-thinking-2507","name":"Qwen: Qwen3 235B A22B Thinking 2507","pricing":{"prompt":"0.0000001","completion":"0.00000039","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753449557,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"z-ai/glm-4-32b","name":"Z.AI: GLM 4 32B ","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753376617,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder:free","name":"Qwen: Qwen3 Coder 480B A35B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753230546,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder","name":"Qwen: Qwen3 Coder 480B A35B","pricing":{"prompt":"0.00000022","completion":"0.00000095","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753230546,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"bytedance/ui-tars-1.5-7b","name":"ByteDance: UI-TARS 7B ","pricing":{"prompt":"0.0000001","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753205056,"top_provider":{"context_length":128000,"max_completion_tokens":2048,"is_moderated":false}},{"id":"google/gemini-2.5-flash-lite","name":"Google: Gemini 2.5 Flash Lite","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1753200276,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b-2507","name":"Qwen: Qwen3 235B A22B Instruct 2507","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753119555,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"switchpoint/router","name":"Switchpoint Router","pricing":{"prompt":"0.00000085","completion":"0.0000034","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752272899,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-k2:free","name":"MoonshotAI: Kimi K2 0711 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752263252,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-k2","name":"MoonshotAI: Kimi K2 0711","pricing":{"prompt":"0.00000014","completion":"0.00000249","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752263252,"top_provider":{"context_length":63000,"max_completion_tokens":63000,"is_moderated":false}},{"id":"thudm/glm-4.1v-9b-thinking","name":"THUDM: GLM 4.1V 9B Thinking","pricing":{"prompt":"0.000000035","completion":"0.000000138","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752244385,"top_provider":{"context_length":65536,"max_completion_tokens":8000,"is_moderated":false}},{"id":"mistralai/devstral-medium","name":"Mistral: Devstral Medium","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752161321,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/devstral-small","name":"Mistral: Devstral Small 1.1","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752160751,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin-mistral-24b-venice-edition:free","name":"Venice: Uncensored (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752094966,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-4","name":"xAI: Grok 4","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1752087689,"top_provider":{"context_length":256000,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-3n-e2b-it:free","name":"Google: Gemma 3n 2B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752074904,"top_provider":{"context_length":8192,"max_completion_tokens":2048,"is_moderated":false}},{"id":"tencent/hunyuan-a13b-instruct:free","name":"Tencent: Hunyuan A13B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751987664,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"tencent/hunyuan-a13b-instruct","name":"Tencent: Hunyuan A13B Instruct","pricing":{"prompt":"0.00000003","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751987664,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"tngtech/deepseek-r1t2-chimera:free","name":"TNG: DeepSeek R1T2 Chimera (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751986985,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"morph/morph-v3-large","name":"Morph: Morph V3 Large","pricing":{"prompt":"0.0000009","completion":"0.0000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751910858,"top_provider":{"context_length":81920,"max_completion_tokens":38000,"is_moderated":false}},{"id":"morph/morph-v3-fast","name":"Morph: Morph V3 Fast","pricing":{"prompt":"0.0000009","completion":"0.0000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751910002,"top_provider":{"context_length":81920,"max_completion_tokens":38000,"is_moderated":false}},{"id":"baidu/ernie-4.5-vl-424b-a47b","name":"Baidu: ERNIE 4.5 VL 424B A47B ","pricing":{"prompt":"0.00000042","completion":"0.00000125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751300903,"top_provider":{"context_length":123000,"max_completion_tokens":16000,"is_moderated":false}},{"id":"baidu/ernie-4.5-300b-a47b","name":"Baidu: ERNIE 4.5 300B A47B ","pricing":{"prompt":"0.00000028","completion":"0.0000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751300139,"top_provider":{"context_length":123000,"max_completion_tokens":12000,"is_moderated":false}},{"id":"thedrummer/anubis-70b-v1.1","name":"TheDrummer: Anubis 70B V1.1","pricing":{"prompt":"0.0000004","completion":"0.0000007","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751208347,"top_provider":{"context_length":16384,"max_completion_tokens":null,"is_moderated":false}},{"id":"inception/mercury","name":"Inception: Mercury","pricing":{"prompt":"0.00000025","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750973026,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-small-3.2-24b-instruct:free","name":"Mistral: Mistral Small 3.2 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750443016,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-3.2-24b-instruct","name":"Mistral: Mistral Small 3.2 24B","pricing":{"prompt":"0.000000075","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750443016,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"minimax/minimax-m1","name":"MiniMax: MiniMax M1","pricing":{"prompt":"0.0000003","completion":"0.00000165","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750200414,"top_provider":{"context_length":1000000,"max_completion_tokens":40000,"is_moderated":false}},{"id":"google/gemini-2.5-flash-lite-preview-06-17","name":"Google: Gemini 2.5 Flash Lite Preview 06-17","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1750173831,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"google/gemini-2.5-flash","name":"Google: Gemini 2.5 Flash","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075","input_cache_write":"0.0000003833"},"created":1750172488,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"google/gemini-2.5-pro","name":"Google: Gemini 2.5 Pro","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1750169544,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"moonshotai/kimi-dev-72b:free","name":"MoonshotAI: Kimi Dev 72B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750115909,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-dev-72b","name":"MoonshotAI: Kimi Dev 72B","pricing":{"prompt":"0.00000029","completion":"0.00000115","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750115909,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/o3-pro","name":"OpenAI: o3 Pro","pricing":{"prompt":"0.00002","completion":"0.00008","request":"0","image":"0.0153","web_search":"0.01","internal_reasoning":"0"},"created":1749598352,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"x-ai/grok-3-mini","name":"xAI: Grok 3 Mini","pricing":{"prompt":"0.0000003","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1749583245,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3","name":"xAI: Grok 3","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1749582908,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/magistral-small-2506","name":"Mistral: Magistral Small 2506","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749569561,"top_provider":{"context_length":40000,"max_completion_tokens":40000,"is_moderated":false}},{"id":"mistralai/magistral-medium-2506","name":"Mistral: Magistral Medium 2506","pricing":{"prompt":"0.000002","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749354054,"top_provider":{"context_length":40960,"max_completion_tokens":40000,"is_moderated":false}},{"id":"mistralai/magistral-medium-2506:thinking","name":"Mistral: Magistral Medium 2506 (thinking)","pricing":{"prompt":"0.000002","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749354054,"top_provider":{"context_length":40960,"max_completion_tokens":40000,"is_moderated":false}},{"id":"google/gemini-2.5-pro-preview","name":"Google: Gemini 2.5 Pro Preview 06-05","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1749137257,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528-qwen3-8b:free","name":"DeepSeek: Deepseek R1 0528 Qwen3 8B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748538543,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528-qwen3-8b","name":"DeepSeek: Deepseek R1 0528 Qwen3 8B","pricing":{"prompt":"0.00000001","completion":"0.00000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748538543,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528:free","name":"DeepSeek: R1 0528 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748455170,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528","name":"DeepSeek: R1 0528","pricing":{"prompt":"0.0000004","completion":"0.00000175","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748455170,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthropic/claude-opus-4","name":"Anthropic: Claude Opus 4","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1747931245,"top_provider":{"context_length":200000,"max_completion_tokens":32000,"is_moderated":true}},{"id":"anthropic/claude-sonnet-4","name":"Anthropic: Claude Sonnet 4","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1747930371,"top_provider":{"context_length":1000000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"mistralai/devstral-small-2505:free","name":"Mistral: Devstral Small 2505 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747837379,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/devstral-small-2505","name":"Mistral: Devstral Small 2505","pricing":{"prompt":"0.00000004","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747837379,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-3n-e4b-it:free","name":"Google: Gemma 3n 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747776824,"top_provider":{"context_length":8192,"max_completion_tokens":2048,"is_moderated":false}},{"id":"google/gemma-3n-e4b-it","name":"Google: Gemma 3n 4B","pricing":{"prompt":"0.00000002","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747776824,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/codex-mini","name":"OpenAI: Codex Mini","pricing":{"prompt":"0.0000015","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000375"},"created":1747409761,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"meta-llama/llama-3.3-8b-instruct:free","name":"Meta: Llama 3.3 8B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747230154,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"nousresearch/deephermes-3-mistral-24b-preview","name":"Nous: DeepHermes 3 Mistral 24B Preview","pricing":{"prompt":"0.00000013","completion":"0.00000051","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746830904,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-medium-3","name":"Mistral: Mistral Medium 3","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746627341,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemini-2.5-pro-preview-05-06","name":"Google: Gemini 2.5 Pro Preview 05-06","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1746578513,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"arcee-ai/spotlight","name":"Arcee AI: Spotlight","pricing":{"prompt":"0.00000018","completion":"0.00000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746481552,"top_provider":{"context_length":131072,"max_completion_tokens":65537,"is_moderated":false}},{"id":"arcee-ai/maestro-reasoning","name":"Arcee AI: Maestro Reasoning","pricing":{"prompt":"0.0000009","completion":"0.0000033","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746481269,"top_provider":{"context_length":131072,"max_completion_tokens":32000,"is_moderated":false}},{"id":"arcee-ai/virtuoso-large","name":"Arcee AI: Virtuoso Large","pricing":{"prompt":"0.00000075","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746478885,"top_provider":{"context_length":131072,"max_completion_tokens":64000,"is_moderated":false}},{"id":"arcee-ai/coder-large","name":"Arcee AI: Coder Large","pricing":{"prompt":"0.0000005","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746478663,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-4-reasoning-plus","name":"Microsoft: Phi 4 Reasoning Plus","pricing":{"prompt":"0.00000007","completion":"0.00000035","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746130961,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"inception/mercury-coder","name":"Inception: Mercury Coder","pricing":{"prompt":"0.00000025","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746033880,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"qwen/qwen3-4b:free","name":"Qwen: Qwen3 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746031104,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-prover-v2","name":"DeepSeek: DeepSeek Prover V2","pricing":{"prompt":"0.0000005","completion":"0.00000218","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746013094,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-guard-4-12b","name":"Meta: Llama Guard 4 12B","pricing":{"prompt":"0.00000018","completion":"0.00000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745975193,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b:free","name":"Qwen: Qwen3 30B A3B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745878604,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b","name":"Qwen: Qwen3 30B A3B","pricing":{"prompt":"0.00000006","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745878604,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-8b:free","name":"Qwen: Qwen3 8B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876632,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-8b","name":"Qwen: Qwen3 8B","pricing":{"prompt":"0.000000035","completion":"0.000000138","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876632,"top_provider":{"context_length":128000,"max_completion_tokens":20000,"is_moderated":false}},{"id":"qwen/qwen3-14b:free","name":"Qwen: Qwen3 14B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876478,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-14b","name":"Qwen: Qwen3 14B","pricing":{"prompt":"0.00000006","completion":"0.00000024","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876478,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-32b","name":"Qwen: Qwen3 32B","pricing":{"prompt":"0.00000003","completion":"0.00000013","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875945,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b:free","name":"Qwen: Qwen3 235B A22B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875757,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b","name":"Qwen: Qwen3 235B A22B","pricing":{"prompt":"0.00000018","completion":"0.00000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875757,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"tngtech/deepseek-r1t-chimera:free","name":"TNG: DeepSeek R1T Chimera (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745760875,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"tngtech/deepseek-r1t-chimera","name":"TNG: DeepSeek R1T Chimera","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745760875,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/mai-ds-r1:free","name":"Microsoft: MAI DS R1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745194100,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/mai-ds-r1","name":"Microsoft: MAI DS R1","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745194100,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"thudm/glm-z1-32b","name":"THUDM: GLM Z1 32B","pricing":{"prompt":"0.00000004","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744924148,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o4-mini-high","name":"OpenAI: o4 Mini High","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0.0008415","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000275"},"created":1744824212,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"openai/o3","name":"OpenAI: o3","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0.00153","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000005"},"created":1744823457,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"openai/o4-mini","name":"OpenAI: o4 Mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0.0008415","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000275"},"created":1744820942,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"shisa-ai/shisa-v2-llama3.3-70b:free","name":"Shisa AI: Shisa V2 Llama 3.3 70B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744754858,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"shisa-ai/shisa-v2-llama3.3-70b","name":"Shisa AI: Shisa V2 Llama 3.3 70B ","pricing":{"prompt":"0.00000004","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744754858,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4.1","name":"OpenAI: GPT-4.1","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000005"},"created":1744651385,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"openai/gpt-4.1-mini","name":"OpenAI: GPT-4.1 Mini","pricing":{"prompt":"0.0000004","completion":"0.0000016","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000001"},"created":1744651381,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"openai/gpt-4.1-nano","name":"OpenAI: GPT-4.1 Nano","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000025"},"created":1744651369,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"eleutherai/llemma_7b","name":"EleutherAI: Llemma 7b","pricing":{"prompt":"0.0000008","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744643225,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"alfredpros/codellama-7b-instruct-solidity","name":"AlfredPros: CodeLLaMa 7B Instruct Solidity","pricing":{"prompt":"0.0000008","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744641874,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"arliai/qwq-32b-arliai-rpr-v1:free","name":"ArliAI: QwQ 32B RpR v1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555982,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"arliai/qwq-32b-arliai-rpr-v1","name":"ArliAI: QwQ 32B RpR v1","pricing":{"prompt":"0.00000002","completion":"0.00000007","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555982,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"agentica-org/deepcoder-14b-preview:free","name":"Agentica: Deepcoder 14B Preview (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555395,"top_provider":{"context_length":96000,"max_completion_tokens":null,"is_moderated":false}},{"id":"agentica-org/deepcoder-14b-preview","name":"Agentica: Deepcoder 14B Preview","pricing":{"prompt":"0.000000015","completion":"0.000000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555395,"top_provider":{"context_length":96000,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-vl-a3b-thinking:free","name":"MoonshotAI: Kimi VL A3B Thinking (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744304841,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-vl-a3b-thinking","name":"MoonshotAI: Kimi VL A3B Thinking","pricing":{"prompt":"0.00000002","completion":"0.00000007","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744304841,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3-mini-beta","name":"xAI: Grok 3 Mini Beta","pricing":{"prompt":"0.0000003","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1744240195,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3-beta","name":"xAI: Grok 3 Beta","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1744240068,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/llama-3.1-nemotron-ultra-253b-v1","name":"NVIDIA: Llama 3.1 Nemotron Ultra 253B v1","pricing":{"prompt":"0.0000006","completion":"0.0000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744115059,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-4-maverick:free","name":"Meta: Llama 4 Maverick (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743881822,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"meta-llama/llama-4-maverick","name":"Meta: Llama 4 Maverick","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.0006684","web_search":"0","internal_reasoning":"0"},"created":1743881822,"top_provider":{"context_length":1048576,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-4-scout:free","name":"Meta: Llama 4 Scout (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743881519,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"meta-llama/llama-4-scout","name":"Meta: Llama 4 Scout","pricing":{"prompt":"0.00000008","completion":"0.0000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743881519,"top_provider":{"context_length":1048576,"max_completion_tokens":1048576,"is_moderated":false}},{"id":"allenai/molmo-7b-d","name":"AllenAI: Molmo 7B D","pricing":{"prompt":"0.0000001","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743023247,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-32b-instruct:free","name":"Qwen: Qwen2.5 VL 32B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742839838,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-32b-instruct","name":"Qwen: Qwen2.5 VL 32B Instruct","pricing":{"prompt":"0.00000004","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742839838,"top_provider":{"context_length":16384,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3-0324:free","name":"DeepSeek: DeepSeek V3 0324 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742824755,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3-0324","name":"DeepSeek: DeepSeek V3 0324","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742824755,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o1-pro","name":"OpenAI: o1-pro","pricing":{"prompt":"0.00015","completion":"0.0006","request":"0","image":"0.21675","web_search":"0","internal_reasoning":"0"},"created":1742423211,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"mistralai/mistral-small-3.1-24b-instruct:free","name":"Mistral: Mistral Small 3.1 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742238937,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-3.1-24b-instruct","name":"Mistral: Mistral Small 3.1 24B","pricing":{"prompt":"0.00000004","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742238937,"top_provider":{"context_length":131072,"max_completion_tokens":96000,"is_moderated":false}},{"id":"allenai/olmo-2-0325-32b-instruct","name":"AllenAI: Olmo 2 32B Instruct","pricing":{"prompt":"0.000001","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741988556,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"google/gemma-3-4b-it:free","name":"Google: Gemma 3 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741905510,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-4b-it","name":"Google: Gemma 3 4B","pricing":{"prompt":"0.00000004","completion":"0.00000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741905510,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-3-12b-it:free","name":"Google: Gemma 3 12B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741902625,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-12b-it","name":"Google: Gemma 3 12B","pricing":{"prompt":"0.00000004","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741902625,"top_provider":{"context_length":96000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"cohere/command-a","name":"Cohere: Command A","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741894342,"top_provider":{"context_length":256000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"openai/gpt-4o-mini-search-preview","name":"OpenAI: GPT-4o-mini Search Preview","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0.0275","image":"0.000217","web_search":"0","internal_reasoning":"0"},"created":1741818122,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o-search-preview","name":"OpenAI: GPT-4o Search Preview","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0.035","image":"0.003613","web_search":"0","internal_reasoning":"0"},"created":1741817949,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"google/gemma-3-27b-it:free","name":"Google: Gemma 3 27B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741756359,"top_provider":{"context_length":96000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-27b-it","name":"Google: Gemma 3 27B","pricing":{"prompt":"0.00000007","completion":"0.00000026","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741756359,"top_provider":{"context_length":96000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"thedrummer/anubis-pro-105b-v1","name":"TheDrummer: Anubis Pro 105B V1","pricing":{"prompt":"0.0000005","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741642290,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"thedrummer/skyfall-36b-v2","name":"TheDrummer: Skyfall 36B V2","pricing":{"prompt":"0.00000004","completion":"0.00000016","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741636566,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-4-multimodal-instruct","name":"Microsoft: Phi 4 Multimodal Instruct","pricing":{"prompt":"0.00000005","completion":"0.0000001","request":"0","image":"0.00017685","web_search":"0","internal_reasoning":"0"},"created":1741396284,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar-reasoning-pro","name":"Perplexity: Sonar Reasoning Pro","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0"},"created":1741313308,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar-pro","name":"Perplexity: Sonar Pro","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0"},"created":1741312423,"top_provider":{"context_length":200000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"perplexity/sonar-deep-research","name":"Perplexity: Sonar Deep Research","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0.000003"},"created":1741311246,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwq-32b:free","name":"Qwen: QwQ 32B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741208814,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwq-32b","name":"Qwen: QwQ 32B","pricing":{"prompt":"0.00000015","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741208814,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/deephermes-3-llama-3-8b-preview:free","name":"Nous: DeepHermes 3 Llama 3 8B Preview (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740719372,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemini-2.0-flash-lite-001","name":"Google: Gemini 2.0 Flash Lite","pricing":{"prompt":"0.000000075","completion":"0.0000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740506212,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthropic/claude-3.7-sonnet","name":"Anthropic: Claude 3.7 Sonnet","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1740422110,"top_provider":{"context_length":200000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"anthropic/claude-3.7-sonnet:thinking","name":"Anthropic: Claude 3.7 Sonnet (thinking)","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1740422110,"top_provider":{"context_length":200000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"perplexity/r1-1776","name":"Perplexity: R1 1776","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740004929,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-saba","name":"Mistral: Saba","pricing":{"prompt":"0.0000002","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739803239,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-r1-mistral-24b:free","name":"Dolphin3.0 R1 Mistral 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462498,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-r1-mistral-24b","name":"Dolphin3.0 R1 Mistral 24B","pricing":{"prompt":"0.00000001","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462498,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-mistral-24b:free","name":"Dolphin3.0 Mistral 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462019,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-mistral-24b","name":"Dolphin3.0 Mistral 24B","pricing":{"prompt":"0.00000003","completion":"0.00000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462019,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-guard-3-8b","name":"Llama Guard 3 8B","pricing":{"prompt":"0.00000002","completion":"0.00000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739401318,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o3-mini-high","name":"OpenAI: o3 Mini High","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1739372611,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"deepseek/deepseek-r1-distill-llama-8b","name":"DeepSeek: R1 Distill Llama 8B","pricing":{"prompt":"0.00000004","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738937718,"top_provider":{"context_length":32000,"max_completion_tokens":32000,"is_moderated":false}},{"id":"google/gemini-2.0-flash-001","name":"Google: Gemini 2.0 Flash","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0.0000258","audio":"0.0000007","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1738769413,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen-vl-plus","name":"Qwen: Qwen VL Plus","pricing":{"prompt":"0.00000021","completion":"0.00000063","request":"0","image":"0.0002688","web_search":"0","internal_reasoning":"0"},"created":1738731255,"top_provider":{"context_length":7500,"max_completion_tokens":1500,"is_moderated":false}},{"id":"aion-labs/aion-1.0","name":"AionLabs: Aion-1.0","pricing":{"prompt":"0.000004","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738697557,"top_provider":{"context_length":131072,"max_completion_tokens":32768,"is_moderated":false}},{"id":"aion-labs/aion-1.0-mini","name":"AionLabs: Aion-1.0-Mini","pricing":{"prompt":"0.0000007","completion":"0.0000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738697107,"top_provider":{"context_length":131072,"max_completion_tokens":32768,"is_moderated":false}},{"id":"aion-labs/aion-rp-llama-3.1-8b","name":"AionLabs: Aion-RP 1.0 (8B)","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738696718,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen-vl-max","name":"Qwen: Qwen VL Max","pricing":{"prompt":"0.0000008","completion":"0.0000032","request":"0","image":"0.001024","web_search":"0","internal_reasoning":"0"},"created":1738434304,"top_provider":{"context_length":7500,"max_completion_tokens":1500,"is_moderated":false}},{"id":"qwen/qwen-turbo","name":"Qwen: Qwen-Turbo","pricing":{"prompt":"0.00000005","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000002"},"created":1738410974,"top_provider":{"context_length":1000000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-72b-instruct:free","name":"Qwen: Qwen2.5 VL 72B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738410311,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-72b-instruct","name":"Qwen: Qwen2.5 VL 72B Instruct","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738410311,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-plus","name":"Qwen: Qwen-Plus","pricing":{"prompt":"0.0000004","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000016"},"created":1738409840,"top_provider":{"context_length":131072,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen-max","name":"Qwen: Qwen-Max ","pricing":{"prompt":"0.0000016","completion":"0.0000064","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000064"},"created":1738402289,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"openai/o3-mini","name":"OpenAI: o3 Mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1738351721,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"mistralai/mistral-small-24b-instruct-2501:free","name":"Mistral: Mistral Small 3 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738255409,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-24b-instruct-2501","name":"Mistral: Mistral Small 3","pricing":{"prompt":"0.00000004","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738255409,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-qwen-32b","name":"DeepSeek: R1 Distill Qwen 32B","pricing":{"prompt":"0.00000027","completion":"0.00000027","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738194830,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-qwen-14b","name":"DeepSeek: R1 Distill Qwen 14B","pricing":{"prompt":"0.00000015","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738193940,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"perplexity/sonar-reasoning","name":"Perplexity: Sonar Reasoning","pricing":{"prompt":"0.000001","completion":"0.000005","request":"0.005","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738131107,"top_provider":{"context_length":127000,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar","name":"Perplexity: Sonar","pricing":{"prompt":"0.000001","completion":"0.000001","request":"0.005","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738013808,"top_provider":{"context_length":127072,"max_completion_tokens":null,"is_moderated":false}},{"id":"liquid/lfm-7b","name":"Liquid: LFM 7B","pricing":{"prompt":"0.00000001","completion":"0.00000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737806883,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"liquid/lfm-3b","name":"Liquid: LFM 3B","pricing":{"prompt":"0.00000002","completion":"0.00000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737806501,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-llama-70b:free","name":"DeepSeek: R1 Distill Llama 70B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737663169,"top_provider":{"context_length":8192,"max_completion_tokens":4096,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-llama-70b","name":"DeepSeek: R1 Distill Llama 70B","pricing":{"prompt":"0.00000003","completion":"0.00000013","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737663169,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1:free","name":"DeepSeek: R1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737381095,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1","name":"DeepSeek: R1","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737381095,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"minimax/minimax-01","name":"MiniMax: MiniMax-01","pricing":{"prompt":"0.0000002","completion":"0.0000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736915462,"top_provider":{"context_length":1000192,"max_completion_tokens":1000192,"is_moderated":false}},{"id":"mistralai/codestral-2501","name":"Mistral: Codestral 2501","pricing":{"prompt":"0.0000003","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736895522,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-4","name":"Microsoft: Phi 4","pricing":{"prompt":"0.00000006","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736489872,"top_provider":{"context_length":16384,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat","name":"DeepSeek: DeepSeek V3","pricing":{"prompt":"0.00000024999988","completion":"0.000000999999888","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1735241320,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"sao10k/l3.3-euryale-70b","name":"Sao10K: Llama 3.3 Euryale 70B","pricing":{"prompt":"0.00000065","completion":"0.00000075","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1734535928,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/o1","name":"OpenAI: o1","pricing":{"prompt":"0.000015","completion":"0.00006","request":"0","image":"0.021675","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000075"},"created":1734459999,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"cohere/command-r7b-12-2024","name":"Cohere: Command R7B (12-2024)","pricing":{"prompt":"0.0000000375","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1734158152,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"google/gemini-2.0-flash-exp:free","name":"Google: Gemini 2.0 Flash Experimental (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733937523,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"meta-llama/llama-3.3-70b-instruct:free","name":"Meta: Llama 3.3 70B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733506137,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.3-70b-instruct","name":"Meta: Llama 3.3 70B Instruct","pricing":{"prompt":"0.000000012","completion":"0.000000036","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733506137,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"amazon/nova-lite-v1","name":"Amazon: Nova Lite 1.0","pricing":{"prompt":"0.00000006","completion":"0.00000024","request":"0","image":"0.00009","web_search":"0","internal_reasoning":"0"},"created":1733437363,"top_provider":{"context_length":300000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"amazon/nova-micro-v1","name":"Amazon: Nova Micro 1.0","pricing":{"prompt":"0.000000035","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733437237,"top_provider":{"context_length":128000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"amazon/nova-pro-v1","name":"Amazon: Nova Pro 1.0","pricing":{"prompt":"0.0000008","completion":"0.0000032","request":"0","image":"0.0012","web_search":"0","internal_reasoning":"0"},"created":1733436303,"top_provider":{"context_length":300000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"qwen/qwq-32b-preview","name":"Qwen: QwQ 32B Preview","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1732754541,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o-2024-11-20","name":"OpenAI: GPT-4o (2024-11-20)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1732127594,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"mistralai/mistral-large-2411","name":"Mistral Large 2411","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731978685,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-large-2407","name":"Mistral Large 2407","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731978415,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/pixtral-large-2411","name":"Mistral: Pixtral Large 2411","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0.002888","web_search":"0","internal_reasoning":"0"},"created":1731977388,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-coder-32b-instruct:free","name":"Qwen2.5 Coder 32B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731368400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-coder-32b-instruct","name":"Qwen2.5 Coder 32B Instruct","pricing":{"prompt":"0.00000006","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731368400,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"raifle/sorcererlm-8x22b","name":"SorcererLM 8x22B","pricing":{"prompt":"0.0000045","completion":"0.0000045","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731105083,"top_provider":{"context_length":16000,"max_completion_tokens":null,"is_moderated":false}},{"id":"thedrummer/unslopnemo-12b","name":"TheDrummer: UnslopNemo 12B","pricing":{"prompt":"0.0000004","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731103448,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthropic/claude-3.5-haiku","name":"Anthropic: Claude 3.5 Haiku","pricing":{"prompt":"0.0000008","completion":"0.000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.00000008","input_cache_write":"0.000001"},"created":1730678400,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"anthropic/claude-3.5-haiku-20241022","name":"Anthropic: Claude 3.5 Haiku (2024-10-22)","pricing":{"prompt":"0.0000008","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000008","input_cache_write":"0.000001"},"created":1730678400,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthracite-org/magnum-v4-72b","name":"Magnum v4 72B","pricing":{"prompt":"0.000002","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729555200,"top_provider":{"context_length":16384,"max_completion_tokens":2048,"is_moderated":false}},{"id":"anthropic/claude-3.5-sonnet","name":"Anthropic: Claude 3.5 Sonnet","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1729555200,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"mistralai/ministral-8b","name":"Mistral: Ministral 8B","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729123200,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/ministral-3b","name":"Mistral: Ministral 3B","pricing":{"prompt":"0.00000004","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729123200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-7b-instruct","name":"Qwen2.5 7B Instruct","pricing":{"prompt":"0.00000004","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729036800,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/llama-3.1-nemotron-70b-instruct","name":"NVIDIA: Llama 3.1 Nemotron 70B Instruct","pricing":{"prompt":"0.0000006","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728950400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"inflection/inflection-3-productivity","name":"Inflection: Inflection 3 Productivity","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728604800,"top_provider":{"context_length":8000,"max_completion_tokens":1024,"is_moderated":false}},{"id":"inflection/inflection-3-pi","name":"Inflection: Inflection 3 Pi","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728604800,"top_provider":{"context_length":8000,"max_completion_tokens":1024,"is_moderated":false}},{"id":"google/gemini-flash-1.5-8b","name":"Google: Gemini 1.5 Flash 8B","pricing":{"prompt":"0.0000000375","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000001","input_cache_write":"0.0000000583"},"created":1727913600,"top_provider":{"context_length":1000000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"thedrummer/rocinante-12b","name":"TheDrummer: Rocinante 12B","pricing":{"prompt":"0.00000017","completion":"0.00000043","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727654400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthracite-org/magnum-v2-72b","name":"Magnum v2 72B","pricing":{"prompt":"0.000003","completion":"0.000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727654400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.2-3b-instruct:free","name":"Meta: Llama 3.2 3B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.2-3b-instruct","name":"Meta: Llama 3.2 3B Instruct","pricing":{"prompt":"0.00000002","completion":"0.00000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":16384,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-1b-instruct","name":"Meta: Llama 3.2 1B Instruct","pricing":{"prompt":"0.000000005","completion":"0.00000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-90b-vision-instruct","name":"Meta: Llama 3.2 90B Vision Instruct","pricing":{"prompt":"0.00000035","completion":"0.0000004","request":"0","image":"0.0005058","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-11b-vision-instruct","name":"Meta: Llama 3.2 11B Vision Instruct","pricing":{"prompt":"0.000000049","completion":"0.000000049","request":"0","image":"0.00007948","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"qwen/qwen-2.5-72b-instruct:free","name":"Qwen2.5 72B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726704000,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-72b-instruct","name":"Qwen2.5 72B Instruct","pricing":{"prompt":"0.00000007","completion":"0.00000026","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726704000,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"neversleep/llama-3.1-lumimaid-8b","name":"NeverSleep: Lumimaid v0.2 8B","pricing":{"prompt":"0.00000009","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726358400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o1-mini","name":"OpenAI: o1-mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1726099200,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":true}},{"id":"openai/o1-mini-2024-09-12","name":"OpenAI: o1-mini (2024-09-12)","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1726099200,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":true}},{"id":"mistralai/pixtral-12b","name":"Mistral: Pixtral 12B","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0.0001445","web_search":"0","internal_reasoning":"0"},"created":1725926400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cohere/command-r-plus-08-2024","name":"Cohere: Command R+ (08-2024)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724976000,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"cohere/command-r-08-2024","name":"Cohere: Command R (08-2024)","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724976000,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"qwen/qwen-2.5-vl-7b-instruct","name":"Qwen: Qwen2.5-VL 7B Instruct","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0.0001445","web_search":"0","internal_reasoning":"0"},"created":1724803200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"sao10k/l3.1-euryale-70b","name":"Sao10K: Llama 3.1 Euryale 70B v2.2","pricing":{"prompt":"0.00000065","completion":"0.00000075","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724803200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-3.5-mini-128k-instruct","name":"Microsoft: Phi-3.5 Mini 128K Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724198400,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/hermes-3-llama-3.1-70b","name":"Nous: Hermes 3 70B Instruct","pricing":{"prompt":"0.00000012","completion":"0.0000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723939200,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"nousresearch/hermes-3-llama-3.1-405b","name":"Nous: Hermes 3 405B Instruct","pricing":{"prompt":"0.0000008","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723766400,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/chatgpt-4o-latest","name":"OpenAI: ChatGPT-4o","pricing":{"prompt":"0.000005","completion":"0.000015","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1723593600,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"sao10k/l3-lunaris-8b","name":"Sao10K: Llama 3 8B Lunaris","pricing":{"prompt":"0.00000004","completion":"0.00000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723507200,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o-2024-08-06","name":"OpenAI: GPT-4o (2024-08-06)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1722902400,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-405b","name":"Meta: Llama 3.1 405B (base)","pricing":{"prompt":"0.000002","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1722556800,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.1-8b-instruct","name":"Meta: Llama 3.1 8B Instruct","pricing":{"prompt":"0.00000002","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":16384,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-405b-instruct:free","name":"Meta: Llama 3.1 405B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.1-405b-instruct","name":"Meta: Llama 3.1 405B Instruct","pricing":{"prompt":"0.0000008","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-70b-instruct","name":"Meta: Llama 3.1 70B Instruct","pricing":{"prompt":"0.0000001","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-nemo:free","name":"Mistral: Mistral Nemo (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721347200,"top_provider":{"context_length":131072,"max_completion_tokens":128000,"is_moderated":false}},{"id":"mistralai/mistral-nemo","name":"Mistral: Mistral Nemo","pricing":{"prompt":"0.00000002","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721347200,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/gpt-4o-mini","name":"OpenAI: GPT-4o-mini","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.000217","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1721260800,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o-mini-2024-07-18","name":"OpenAI: GPT-4o-mini (2024-07-18)","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1721260800,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"google/gemma-2-27b-it","name":"Google: Gemma 2 27B","pricing":{"prompt":"0.00000065","completion":"0.00000065","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1720828800,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-2-9b-it:free","name":"Google: Gemma 2 9B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1719532800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-2-9b-it","name":"Google: Gemma 2 9B","pricing":{"prompt":"0.00000001","completion":"0.00000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1719532800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthropic/claude-3.5-sonnet-20240620","name":"Anthropic: Claude 3.5 Sonnet (2024-06-20)","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1718841600,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"sao10k/l3-euryale-70b","name":"Sao10k: Llama 3 Euryale 70B v2.1","pricing":{"prompt":"0.00000148","completion":"0.00000148","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1718668800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"nousresearch/hermes-2-pro-llama-3-8b","name":"NousResearch: Hermes 2 Pro - Llama-3 8B","pricing":{"prompt":"0.000000025","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct:free","name":"Mistral: Mistral 7B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct","name":"Mistral: Mistral 7B Instruct","pricing":{"prompt":"0.000000028","completion":"0.000000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct-v0.3","name":"Mistral: Mistral 7B Instruct v0.3","pricing":{"prompt":"0.000000028","completion":"0.000000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"microsoft/phi-3-mini-128k-instruct","name":"Microsoft: Phi-3 Mini 128K Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716681600,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-3-medium-128k-instruct","name":"Microsoft: Phi-3 Medium 128K Instruct","pricing":{"prompt":"0.000001","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716508800,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"neversleep/llama-3-lumimaid-70b","name":"NeverSleep: Llama 3 Lumimaid 70B","pricing":{"prompt":"0.000004","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1715817600,"top_provider":{"context_length":8192,"max_completion_tokens":4096,"is_moderated":false}},{"id":"google/gemini-flash-1.5","name":"Google: Gemini 1.5 Flash ","pricing":{"prompt":"0.000000075","completion":"0.0000003","request":"0","image":"0.00004","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000001875","input_cache_write":"0.0000001583"},"created":1715644800,"top_provider":{"context_length":1000000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"openai/gpt-4o","name":"OpenAI: GPT-4o","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o:extended","name":"OpenAI: GPT-4o (extended)","pricing":{"prompt":"0.000006","completion":"0.000018","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":64000,"is_moderated":true}},{"id":"meta-llama/llama-guard-2-8b","name":"Meta: LlamaGuard 2 8B","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o-2024-05-13","name":"OpenAI: GPT-4o (2024-05-13)","pricing":{"prompt":"0.000005","completion":"0.000015","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"meta-llama/llama-3-8b-instruct","name":"Meta: Llama 3 8B Instruct","pricing":{"prompt":"0.00000003","completion":"0.00000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713398400,"top_provider":{"context_length":8192,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3-70b-instruct","name":"Meta: Llama 3 70B Instruct","pricing":{"prompt":"0.0000003","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713398400,"top_provider":{"context_length":8192,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mixtral-8x22b-instruct","name":"Mistral: Mixtral 8x22B Instruct","pricing":{"prompt":"0.0000009","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713312000,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/wizardlm-2-8x22b","name":"WizardLM-2 8x22B","pricing":{"prompt":"0.00000048","completion":"0.00000048","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713225600,"top_provider":{"context_length":65536,"max_completion_tokens":65536,"is_moderated":false}},{"id":"google/gemini-pro-1.5","name":"Google: Gemini 1.5 Pro","pricing":{"prompt":"0.00000125","completion":"0.000005","request":"0","image":"0.0006575","web_search":"0","internal_reasoning":"0"},"created":1712620800,"top_provider":{"context_length":2000000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"openai/gpt-4-turbo","name":"OpenAI: GPT-4 Turbo","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0.01445","web_search":"0","internal_reasoning":"0"},"created":1712620800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"cohere/command-r-plus","name":"Cohere: Command R+","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1712188800,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"cohere/command-r-plus-04-2024","name":"Cohere: Command R+ (04-2024)","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1712016000,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"cohere/command","name":"Cohere: Command","pricing":{"prompt":"0.000001","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1710374400,"top_provider":{"context_length":4096,"max_completion_tokens":4000,"is_moderated":true}},{"id":"cohere/command-r","name":"Cohere: Command R","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1710374400,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"anthropic/claude-3-haiku","name":"Anthropic: Claude 3 Haiku","pricing":{"prompt":"0.00000025","completion":"0.00000125","request":"0","image":"0.0004","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000003","input_cache_write":"0.0000003"},"created":1710288000,"top_provider":{"context_length":200000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"anthropic/claude-3-opus","name":"Anthropic: Claude 3 Opus","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1709596800,"top_provider":{"context_length":200000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"cohere/command-r-03-2024","name":"Cohere: Command R (03-2024)","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1709341200,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"mistralai/mistral-large","name":"Mistral Large","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1708905600,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo-0613","name":"OpenAI: GPT-3.5 Turbo (older v0613)","pricing":{"prompt":"0.000001","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1706140800,"top_provider":{"context_length":4095,"max_completion_tokens":4096,"is_moderated":false}},{"id":"openai/gpt-4-turbo-preview","name":"OpenAI: GPT-4 Turbo Preview","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1706140800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mistralai/mistral-small","name":"Mistral Small","pricing":{"prompt":"0.0000002","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1704844800,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-tiny","name":"Mistral Tiny","pricing":{"prompt":"0.00000025","completion":"0.00000025","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1704844800,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mixtral-8x7b-instruct","name":"Mistral: Mixtral 8x7B Instruct","pricing":{"prompt":"0.0000004","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1702166400,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"neversleep/noromaid-20b","name":"Noromaid 20B","pricing":{"prompt":"0.000001","completion":"0.00000175","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1700956800,"top_provider":{"context_length":4096,"max_completion_tokens":null,"is_moderated":false}},{"id":"alpindale/goliath-120b","name":"Goliath 120B","pricing":{"prompt":"0.000004","completion":"0.0000055","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1699574400,"top_provider":{"context_length":6144,"max_completion_tokens":512,"is_moderated":false}},{"id":"openrouter/auto","name":"Auto Router","pricing":{"prompt":"-1","completion":"-1"},"created":1699401600,"top_provider":{"context_length":null,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4-1106-preview","name":"OpenAI: GPT-4 Turbo (older v1106)","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1699228800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-3.5-turbo-instruct","name":"OpenAI: GPT-3.5 Turbo Instruct","pricing":{"prompt":"0.0000015","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1695859200,"top_provider":{"context_length":4095,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mistralai/mistral-7b-instruct-v0.1","name":"Mistral: Mistral 7B Instruct v0.1","pricing":{"prompt":"0.00000011","completion":"0.00000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1695859200,"top_provider":{"context_length":2824,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo-16k","name":"OpenAI: GPT-3.5 Turbo 16k","pricing":{"prompt":"0.000003","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1693180800,"top_provider":{"context_length":16385,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mancer/weaver","name":"Mancer: Weaver (alpha)","pricing":{"prompt":"0.000001125","completion":"0.000001125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1690934400,"top_provider":{"context_length":8000,"max_completion_tokens":2000,"is_moderated":false}},{"id":"undi95/remm-slerp-l2-13b","name":"ReMM SLERP 13B","pricing":{"prompt":"0.00000045","completion":"0.00000065","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1689984000,"top_provider":{"context_length":6144,"max_completion_tokens":null,"is_moderated":false}},{"id":"gryphe/mythomax-l2-13b","name":"MythoMax 13B","pricing":{"prompt":"0.00000006","completion":"0.00000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1688256000,"top_provider":{"context_length":4096,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo","name":"OpenAI: GPT-3.5 Turbo","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":16385,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-4","name":"OpenAI: GPT-4","pricing":{"prompt":"0.00003","completion":"0.00006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":8191,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-4-0314","name":"OpenAI: GPT-4 (older v0314)","pricing":{"prompt":"0.00003","completion":"0.00006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":8191,"max_completion_tokens":4096,"is_moderated":true}}]
\ No newline at end of file
+export const models = [{"id":"inclusionai/ling-1t","name":"inclusionAI: Ling-1T","pricing":{"prompt":"0.000001","completion":"0.000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1760316076,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"nvidia/llama-3.3-nemotron-super-49b-v1.5","name":"NVIDIA: Llama 3.3 Nemotron Super 49B V1.5","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1760101395,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"baidu/ernie-4.5-21b-a3b-thinking","name":"Baidu: ERNIE 4.5 21B A3B Thinking","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1760048887,"top_provider":{"context_length":131072,"max_completion_tokens":65536,"is_moderated":false}},{"id":"google/gemini-2.5-flash-image","name":"Google: Gemini 2.5 Flash Image (Nano Banana)","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0"},"created":1759870431,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen3-vl-30b-a3b-thinking","name":"Qwen: Qwen3 VL 30B A3B Thinking","pricing":{"prompt":"0.00000029","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759794479,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"qwen/qwen3-vl-30b-a3b-instruct","name":"Qwen: Qwen3 VL 30B A3B Instruct","pricing":{"prompt":"0.00000029","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759794476,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"openai/gpt-5-pro","name":"OpenAI: GPT-5 Pro","pricing":{"prompt":"0.000015","completion":"0.00012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759776663,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"z-ai/glm-4.6","name":"Z.AI: GLM 4.6","pricing":{"prompt":"0.0000005","completion":"0.00000175","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759235576,"top_provider":{"context_length":202752,"max_completion_tokens":202752,"is_moderated":false}},{"id":"anthropic/claude-sonnet-4.5","name":"Anthropic: Claude Sonnet 4.5","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759161676,"top_provider":{"context_length":1000000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"deepseek/deepseek-v3.2-exp","name":"DeepSeek: DeepSeek V3.2 Exp","pricing":{"prompt":"0.00000027","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1759150481,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"thedrummer/cydonia-24b-v4.1","name":"TheDrummer: Cydonia 24B V4.1","pricing":{"prompt":"0.0000003","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758931878,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"relace/relace-apply-3","name":"Relace: Relace Apply 3","pricing":{"prompt":"0.00000085","completion":"0.00000125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758891572,"top_provider":{"context_length":256000,"max_completion_tokens":128000,"is_moderated":false}},{"id":"google/gemini-2.5-flash-preview-09-2025","name":"Google: Gemini 2.5 Flash Preview 09-2025","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075","input_cache_write":"0.0000003833"},"created":1758820178,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"google/gemini-2.5-flash-lite-preview-09-2025","name":"Google: Gemini 2.5 Flash Lite Preview 09-2025","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758819686,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"qwen/qwen3-vl-235b-a22b-thinking","name":"Qwen: Qwen3 VL 235B A22B Thinking","pricing":{"prompt":"0.00000045","completion":"0.0000035","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758668690,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"qwen/qwen3-vl-235b-a22b-instruct","name":"Qwen: Qwen3 VL 235B A22B Instruct","pricing":{"prompt":"0.0000003","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758668687,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-max","name":"Qwen: Qwen3 Max","pricing":{"prompt":"0.0000012","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000024"},"created":1758662808,"top_provider":{"context_length":256000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen3-coder-plus","name":"Qwen: Qwen3 Coder Plus","pricing":{"prompt":"0.000001","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000001"},"created":1758662707,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":false}},{"id":"openai/gpt-5-codex","name":"OpenAI: GPT-5 Codex","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000125"},"created":1758643403,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"deepseek/deepseek-v3.1-terminus","name":"DeepSeek: DeepSeek V3.1 Terminus","pricing":{"prompt":"0.00000023","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758548275,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"x-ai/grok-4-fast","name":"xAI: Grok 4 Fast","pricing":{"prompt":"0.0000002","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000005"},"created":1758240090,"top_provider":{"context_length":2000000,"max_completion_tokens":30000,"is_moderated":false}},{"id":"alibaba/tongyi-deepresearch-30b-a3b:free","name":"Tongyi DeepResearch 30B A3B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758210804,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"alibaba/tongyi-deepresearch-30b-a3b","name":"Tongyi DeepResearch 30B A3B","pricing":{"prompt":"0.00000009","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758210804,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"qwen/qwen3-coder-flash","name":"Qwen: Qwen3 Coder Flash","pricing":{"prompt":"0.0000003","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000008"},"created":1758115536,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":false}},{"id":"arcee-ai/afm-4.5b","name":"Arcee AI: AFM 4.5B","pricing":{"prompt":"0.000000048","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1758040484,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"opengvlab/internvl3-78b","name":"OpenGVLab: InternVL3 78B","pricing":{"prompt":"0.00000007","completion":"0.00000026","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757962555,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen3-next-80b-a3b-thinking","name":"Qwen: Qwen3 Next 80B A3B Thinking","pricing":{"prompt":"0.00000014","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757612284,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-next-80b-a3b-instruct","name":"Qwen: Qwen3 Next 80B A3B Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757612213,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"meituan/longcat-flash-chat:free","name":"Meituan: LongCat Flash Chat (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757427658,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"meituan/longcat-flash-chat","name":"Meituan: LongCat Flash Chat","pricing":{"prompt":"0.00000015","completion":"0.00000075","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757427658,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"qwen/qwen-plus-2025-07-28","name":"Qwen: Qwen Plus 0728","pricing":{"prompt":"0.0000004","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757347599,"top_provider":{"context_length":1000000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen-plus-2025-07-28:thinking","name":"Qwen: Qwen Plus 0728 (thinking)","pricing":{"prompt":"0.0000004","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757347599,"top_provider":{"context_length":1000000,"max_completion_tokens":32768,"is_moderated":false}},{"id":"nvidia/nemotron-nano-9b-v2:free","name":"NVIDIA: Nemotron Nano 9B V2 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757106807,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/nemotron-nano-9b-v2","name":"NVIDIA: Nemotron Nano 9B V2","pricing":{"prompt":"0.00000004","completion":"0.00000016","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757106807,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-k2-0905","name":"MoonshotAI: Kimi K2 0905","pricing":{"prompt":"0.00000039","completion":"0.0000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1757021147,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"deepcogito/cogito-v2-preview-llama-109b-moe","name":"Cogito V2 Preview Llama 109B","pricing":{"prompt":"0.00000018","completion":"0.00000059","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756831568,"top_provider":{"context_length":32767,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepcogito/cogito-v2-preview-deepseek-671b","name":"Deep Cogito: Cogito V2 Preview Deepseek 671B","pricing":{"prompt":"0.00000125","completion":"0.00000125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756830949,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"stepfun-ai/step3","name":"StepFun: Step3","pricing":{"prompt":"0.00000057","completion":"0.00000142","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756415375,"top_provider":{"context_length":65536,"max_completion_tokens":65536,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b-thinking-2507","name":"Qwen: Qwen3 30B A3B Thinking 2507","pricing":{"prompt":"0.00000008","completion":"0.00000029","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756399192,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"x-ai/grok-code-fast-1","name":"xAI: Grok Code Fast 1","pricing":{"prompt":"0.0000002","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000002"},"created":1756238927,"top_provider":{"context_length":256000,"max_completion_tokens":10000,"is_moderated":false}},{"id":"nousresearch/hermes-4-70b","name":"Nous: Hermes 4 70B","pricing":{"prompt":"0.00000011","completion":"0.00000038","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756236182,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"nousresearch/hermes-4-405b","name":"Nous: Hermes 4 405B","pricing":{"prompt":"0.0000003","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1756235463,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"google/gemini-2.5-flash-image-preview","name":"Google: Gemini 2.5 Flash Image Preview (Nano Banana)","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0"},"created":1756218977,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3.1:free","name":"DeepSeek: DeepSeek V3.1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755779628,"top_provider":{"context_length":163800,"max_completion_tokens":null,"is_moderated":true}},{"id":"deepseek/deepseek-chat-v3.1","name":"DeepSeek: DeepSeek V3.1","pricing":{"prompt":"0.0000002","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755779628,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"openai/gpt-4o-audio-preview","name":"OpenAI: GPT-4o Audio","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","audio":"0.00004","web_search":"0","internal_reasoning":"0"},"created":1755233061,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"mistralai/mistral-medium-3.1","name":"Mistral: Mistral Medium 3.1","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755095639,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"baidu/ernie-4.5-21b-a3b","name":"Baidu: ERNIE 4.5 21B A3B","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755034167,"top_provider":{"context_length":120000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"baidu/ernie-4.5-vl-28b-a3b","name":"Baidu: ERNIE 4.5 VL 28B A3B","pricing":{"prompt":"0.00000014","completion":"0.00000056","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1755032836,"top_provider":{"context_length":30000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"z-ai/glm-4.5v","name":"Z.AI: GLM 4.5V","pricing":{"prompt":"0.0000006","completion":"0.0000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754922288,"top_provider":{"context_length":65536,"max_completion_tokens":16384,"is_moderated":false}},{"id":"ai21/jamba-mini-1.7","name":"AI21: Jamba Mini 1.7","pricing":{"prompt":"0.0000002","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754670601,"top_provider":{"context_length":256000,"max_completion_tokens":4096,"is_moderated":false}},{"id":"ai21/jamba-large-1.7","name":"AI21: Jamba Large 1.7","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754669020,"top_provider":{"context_length":256000,"max_completion_tokens":4096,"is_moderated":false}},{"id":"openai/gpt-5-chat","name":"OpenAI: GPT-5 Chat","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000125"},"created":1754587837,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-5","name":"OpenAI: GPT-5","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000125"},"created":1754587413,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-5-mini","name":"OpenAI: GPT-5 Mini","pricing":{"prompt":"0.00000025","completion":"0.000002","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000025"},"created":1754587407,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-5-nano","name":"OpenAI: GPT-5 Nano","pricing":{"prompt":"0.00000005","completion":"0.0000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000005"},"created":1754587402,"top_provider":{"context_length":400000,"max_completion_tokens":128000,"is_moderated":true}},{"id":"openai/gpt-oss-120b","name":"OpenAI: gpt-oss-120b","pricing":{"prompt":"0.00000004","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414231,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/gpt-oss-20b:free","name":"OpenAI: gpt-oss-20b (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414229,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/gpt-oss-20b","name":"OpenAI: gpt-oss-20b","pricing":{"prompt":"0.00000003","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754414229,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthropic/claude-opus-4.1","name":"Anthropic: Claude Opus 4.1","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1754411591,"top_provider":{"context_length":200000,"max_completion_tokens":32000,"is_moderated":false}},{"id":"mistralai/codestral-2508","name":"Mistral: Codestral 2508","pricing":{"prompt":"0.0000003","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1754079630,"top_provider":{"context_length":256000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder-30b-a3b-instruct","name":"Qwen: Qwen3 Coder 30B A3B Instruct","pricing":{"prompt":"0.00000006","completion":"0.00000025","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753972379,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b-instruct-2507","name":"Qwen: Qwen3 30B A3B Instruct 2507","pricing":{"prompt":"0.00000008","completion":"0.00000033","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753806965,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"z-ai/glm-4.5","name":"Z.AI: GLM 4.5","pricing":{"prompt":"0.00000035","completion":"0.00000155","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471347,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"z-ai/glm-4.5-air:free","name":"Z.AI: GLM 4.5 Air (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471258,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"z-ai/glm-4.5-air","name":"Z.AI: GLM 4.5 Air","pricing":{"prompt":"0.00000014","completion":"0.00000086","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753471258,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b-thinking-2507","name":"Qwen: Qwen3 235B A22B Thinking 2507","pricing":{"prompt":"0.00000011","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753449557,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"z-ai/glm-4-32b","name":"Z.AI: GLM 4 32B ","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753376617,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder:free","name":"Qwen: Qwen3 Coder 480B A35B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753230546,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-coder","name":"Qwen: Qwen3 Coder 480B A35B","pricing":{"prompt":"0.00000022","completion":"0.00000095","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753230546,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"bytedance/ui-tars-1.5-7b","name":"ByteDance: UI-TARS 7B ","pricing":{"prompt":"0.0000001","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753205056,"top_provider":{"context_length":128000,"max_completion_tokens":2048,"is_moderated":false}},{"id":"google/gemini-2.5-flash-lite","name":"Google: Gemini 2.5 Flash Lite","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1753200276,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b-2507","name":"Qwen: Qwen3 235B A22B Instruct 2507","pricing":{"prompt":"0.00000008","completion":"0.00000055","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1753119555,"top_provider":{"context_length":262144,"max_completion_tokens":262144,"is_moderated":false}},{"id":"switchpoint/router","name":"Switchpoint Router","pricing":{"prompt":"0.00000085","completion":"0.0000034","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752272899,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-k2:free","name":"MoonshotAI: Kimi K2 0711 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752263252,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":true}},{"id":"moonshotai/kimi-k2","name":"MoonshotAI: Kimi K2 0711","pricing":{"prompt":"0.00000014","completion":"0.00000249","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752263252,"top_provider":{"context_length":63000,"max_completion_tokens":63000,"is_moderated":false}},{"id":"thudm/glm-4.1v-9b-thinking","name":"THUDM: GLM 4.1V 9B Thinking","pricing":{"prompt":"0.000000035","completion":"0.000000138","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752244385,"top_provider":{"context_length":65536,"max_completion_tokens":8000,"is_moderated":false}},{"id":"mistralai/devstral-medium","name":"Mistral: Devstral Medium","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752161321,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/devstral-small","name":"Mistral: Devstral Small 1.1","pricing":{"prompt":"0.00000007","completion":"0.00000028","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752160751,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin-mistral-24b-venice-edition:free","name":"Venice: Uncensored (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752094966,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-4","name":"xAI: Grok 4","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1752087689,"top_provider":{"context_length":256000,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-3n-e2b-it:free","name":"Google: Gemma 3n 2B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1752074904,"top_provider":{"context_length":8192,"max_completion_tokens":2048,"is_moderated":false}},{"id":"tencent/hunyuan-a13b-instruct:free","name":"Tencent: Hunyuan A13B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751987664,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"tencent/hunyuan-a13b-instruct","name":"Tencent: Hunyuan A13B Instruct","pricing":{"prompt":"0.00000003","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751987664,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"tngtech/deepseek-r1t2-chimera:free","name":"TNG: DeepSeek R1T2 Chimera (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751986985,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"tngtech/deepseek-r1t2-chimera","name":"TNG: DeepSeek R1T2 Chimera","pricing":{"prompt":"0.0000003","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751986985,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"morph/morph-v3-large","name":"Morph: Morph V3 Large","pricing":{"prompt":"0.0000009","completion":"0.0000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751910858,"top_provider":{"context_length":81920,"max_completion_tokens":38000,"is_moderated":false}},{"id":"morph/morph-v3-fast","name":"Morph: Morph V3 Fast","pricing":{"prompt":"0.0000008","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751910002,"top_provider":{"context_length":81920,"max_completion_tokens":38000,"is_moderated":false}},{"id":"baidu/ernie-4.5-vl-424b-a47b","name":"Baidu: ERNIE 4.5 VL 424B A47B ","pricing":{"prompt":"0.00000042","completion":"0.00000125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751300903,"top_provider":{"context_length":123000,"max_completion_tokens":16000,"is_moderated":false}},{"id":"baidu/ernie-4.5-300b-a47b","name":"Baidu: ERNIE 4.5 300B A47B ","pricing":{"prompt":"0.00000028","completion":"0.0000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751300139,"top_provider":{"context_length":123000,"max_completion_tokens":12000,"is_moderated":false}},{"id":"thedrummer/anubis-70b-v1.1","name":"TheDrummer: Anubis 70B V1.1","pricing":{"prompt":"0.00000065","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1751208347,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"inception/mercury","name":"Inception: Mercury","pricing":{"prompt":"0.00000025","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750973026,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-small-3.2-24b-instruct:free","name":"Mistral: Mistral Small 3.2 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750443016,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-3.2-24b-instruct","name":"Mistral: Mistral Small 3.2 24B","pricing":{"prompt":"0.00000006","completion":"0.00000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750443016,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"minimax/minimax-m1","name":"MiniMax: MiniMax M1","pricing":{"prompt":"0.0000004","completion":"0.0000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750200414,"top_provider":{"context_length":1000000,"max_completion_tokens":40000,"is_moderated":false}},{"id":"google/gemini-2.5-flash-lite-preview-06-17","name":"Google: Gemini 2.5 Flash Lite Preview 06-17","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","audio":"0.0000003","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1750173831,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"google/gemini-2.5-flash","name":"Google: Gemini 2.5 Flash","pricing":{"prompt":"0.0000003","completion":"0.0000025","request":"0","image":"0.001238","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075","input_cache_write":"0.0000003833"},"created":1750172488,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"google/gemini-2.5-pro","name":"Google: Gemini 2.5 Pro","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1750169544,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"moonshotai/kimi-dev-72b:free","name":"MoonshotAI: Kimi Dev 72B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750115909,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"moonshotai/kimi-dev-72b","name":"MoonshotAI: Kimi Dev 72B","pricing":{"prompt":"0.00000029","completion":"0.00000115","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1750115909,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"openai/o3-pro","name":"OpenAI: o3 Pro","pricing":{"prompt":"0.00002","completion":"0.00008","request":"0","image":"0.0153","web_search":"0.01","internal_reasoning":"0"},"created":1749598352,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"x-ai/grok-3-mini","name":"xAI: Grok 3 Mini","pricing":{"prompt":"0.0000003","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1749583245,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3","name":"xAI: Grok 3","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1749582908,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/magistral-small-2506","name":"Mistral: Magistral Small 2506","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749569561,"top_provider":{"context_length":40000,"max_completion_tokens":40000,"is_moderated":false}},{"id":"mistralai/magistral-medium-2506","name":"Mistral: Magistral Medium 2506","pricing":{"prompt":"0.000002","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749354054,"top_provider":{"context_length":40960,"max_completion_tokens":40000,"is_moderated":false}},{"id":"mistralai/magistral-medium-2506:thinking","name":"Mistral: Magistral Medium 2506 (thinking)","pricing":{"prompt":"0.000002","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1749354054,"top_provider":{"context_length":40960,"max_completion_tokens":40000,"is_moderated":false}},{"id":"google/gemini-2.5-pro-preview","name":"Google: Gemini 2.5 Pro Preview 06-05","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1749137257,"top_provider":{"context_length":1048576,"max_completion_tokens":65536,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528-qwen3-8b:free","name":"DeepSeek: Deepseek R1 0528 Qwen3 8B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748538543,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528-qwen3-8b","name":"DeepSeek: Deepseek R1 0528 Qwen3 8B","pricing":{"prompt":"0.00000003","completion":"0.00000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748538543,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528:free","name":"DeepSeek: R1 0528 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748455170,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-0528","name":"DeepSeek: R1 0528","pricing":{"prompt":"0.0000004","completion":"0.00000175","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1748455170,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"anthropic/claude-opus-4","name":"Anthropic: Claude Opus 4","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1747931245,"top_provider":{"context_length":200000,"max_completion_tokens":32000,"is_moderated":false}},{"id":"anthropic/claude-sonnet-4","name":"Anthropic: Claude Sonnet 4","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1747930371,"top_provider":{"context_length":1000000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"mistralai/devstral-small-2505:free","name":"Mistral: Devstral Small 2505 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747837379,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/devstral-small-2505","name":"Mistral: Devstral Small 2505","pricing":{"prompt":"0.00000005","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747837379,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"google/gemma-3n-e4b-it:free","name":"Google: Gemma 3n 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747776824,"top_provider":{"context_length":8192,"max_completion_tokens":2048,"is_moderated":false}},{"id":"google/gemma-3n-e4b-it","name":"Google: Gemma 3n 4B","pricing":{"prompt":"0.00000002","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747776824,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/codex-mini","name":"OpenAI: Codex Mini","pricing":{"prompt":"0.0000015","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000375"},"created":1747409761,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"meta-llama/llama-3.3-8b-instruct:free","name":"Meta: Llama 3.3 8B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1747230154,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"nousresearch/deephermes-3-mistral-24b-preview","name":"Nous: DeepHermes 3 Mistral 24B Preview","pricing":{"prompt":"0.00000015","completion":"0.00000059","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746830904,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"mistralai/mistral-medium-3","name":"Mistral: Mistral Medium 3","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746627341,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemini-2.5-pro-preview-05-06","name":"Google: Gemini 2.5 Pro Preview 05-06","pricing":{"prompt":"0.00000125","completion":"0.00001","request":"0","image":"0.00516","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000031","input_cache_write":"0.000001625"},"created":1746578513,"top_provider":{"context_length":1048576,"max_completion_tokens":65535,"is_moderated":false}},{"id":"arcee-ai/spotlight","name":"Arcee AI: Spotlight","pricing":{"prompt":"0.00000018","completion":"0.00000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746481552,"top_provider":{"context_length":131072,"max_completion_tokens":65537,"is_moderated":false}},{"id":"arcee-ai/maestro-reasoning","name":"Arcee AI: Maestro Reasoning","pricing":{"prompt":"0.0000009","completion":"0.0000033","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746481269,"top_provider":{"context_length":131072,"max_completion_tokens":32000,"is_moderated":false}},{"id":"arcee-ai/virtuoso-large","name":"Arcee AI: Virtuoso Large","pricing":{"prompt":"0.00000075","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746478885,"top_provider":{"context_length":131072,"max_completion_tokens":64000,"is_moderated":false}},{"id":"arcee-ai/coder-large","name":"Arcee AI: Coder Large","pricing":{"prompt":"0.0000005","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746478663,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-4-reasoning-plus","name":"Microsoft: Phi 4 Reasoning Plus","pricing":{"prompt":"0.00000007","completion":"0.00000035","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746130961,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"inception/mercury-coder","name":"Inception: Mercury Coder","pricing":{"prompt":"0.00000025","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746033880,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"qwen/qwen3-4b:free","name":"Qwen: Qwen3 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746031104,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-prover-v2","name":"DeepSeek: DeepSeek Prover V2","pricing":{"prompt":"0.0000005","completion":"0.00000218","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1746013094,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-guard-4-12b","name":"Meta: Llama Guard 4 12B","pricing":{"prompt":"0.00000018","completion":"0.00000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745975193,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b:free","name":"Qwen: Qwen3 30B A3B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745878604,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-30b-a3b","name":"Qwen: Qwen3 30B A3B","pricing":{"prompt":"0.00000006","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745878604,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-8b:free","name":"Qwen: Qwen3 8B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876632,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-8b","name":"Qwen: Qwen3 8B","pricing":{"prompt":"0.000000035","completion":"0.000000138","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876632,"top_provider":{"context_length":128000,"max_completion_tokens":20000,"is_moderated":false}},{"id":"qwen/qwen3-14b:free","name":"Qwen: Qwen3 14B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876478,"top_provider":{"context_length":40960,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-14b","name":"Qwen: Qwen3 14B","pricing":{"prompt":"0.00000005","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745876478,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-32b","name":"Qwen: Qwen3 32B","pricing":{"prompt":"0.00000005","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875945,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b:free","name":"Qwen: Qwen3 235B A22B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875757,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen3-235b-a22b","name":"Qwen: Qwen3 235B A22B","pricing":{"prompt":"0.00000018","completion":"0.00000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745875757,"top_provider":{"context_length":40960,"max_completion_tokens":40960,"is_moderated":false}},{"id":"tngtech/deepseek-r1t-chimera:free","name":"TNG: DeepSeek R1T Chimera (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745760875,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"tngtech/deepseek-r1t-chimera","name":"TNG: DeepSeek R1T Chimera","pricing":{"prompt":"0.0000003","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745760875,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"microsoft/mai-ds-r1:free","name":"Microsoft: MAI DS R1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745194100,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/mai-ds-r1","name":"Microsoft: MAI DS R1","pricing":{"prompt":"0.0000003","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1745194100,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"thudm/glm-z1-32b","name":"THUDM: GLM Z1 32B","pricing":{"prompt":"0.00000005","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744924148,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"openai/o4-mini-high","name":"OpenAI: o4 Mini High","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0.0008415","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000275"},"created":1744824212,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"openai/o3","name":"OpenAI: o3","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0.00153","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000005"},"created":1744823457,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"openai/o4-mini","name":"OpenAI: o4 Mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0.0008415","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000275"},"created":1744820942,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"shisa-ai/shisa-v2-llama3.3-70b:free","name":"Shisa AI: Shisa V2 Llama 3.3 70B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744754858,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"shisa-ai/shisa-v2-llama3.3-70b","name":"Shisa AI: Shisa V2 Llama 3.3 70B ","pricing":{"prompt":"0.00000005","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744754858,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen2.5-coder-7b-instruct","name":"Qwen: Qwen2.5 Coder 7B Instruct","pricing":{"prompt":"0.00000003","completion":"0.00000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744734887,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4.1","name":"OpenAI: GPT-4.1","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000005"},"created":1744651385,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"openai/gpt-4.1-mini","name":"OpenAI: GPT-4.1 Mini","pricing":{"prompt":"0.0000004","completion":"0.0000016","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.0000001"},"created":1744651381,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"openai/gpt-4.1-nano","name":"OpenAI: GPT-4.1 Nano","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.000000025"},"created":1744651369,"top_provider":{"context_length":1047576,"max_completion_tokens":32768,"is_moderated":true}},{"id":"eleutherai/llemma_7b","name":"EleutherAI: Llemma 7b","pricing":{"prompt":"0.0000008","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744643225,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"alfredpros/codellama-7b-instruct-solidity","name":"AlfredPros: CodeLLaMa 7B Instruct Solidity","pricing":{"prompt":"0.0000008","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744641874,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"arliai/qwq-32b-arliai-rpr-v1:free","name":"ArliAI: QwQ 32B RpR v1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555982,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"arliai/qwq-32b-arliai-rpr-v1","name":"ArliAI: QwQ 32B RpR v1","pricing":{"prompt":"0.00000003","completion":"0.00000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555982,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"agentica-org/deepcoder-14b-preview:free","name":"Agentica: Deepcoder 14B Preview (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555395,"top_provider":{"context_length":96000,"max_completion_tokens":null,"is_moderated":false}},{"id":"agentica-org/deepcoder-14b-preview","name":"Agentica: Deepcoder 14B Preview","pricing":{"prompt":"0.000000015","completion":"0.000000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744555395,"top_provider":{"context_length":96000,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3-mini-beta","name":"xAI: Grok 3 Mini Beta","pricing":{"prompt":"0.0000003","completion":"0.0000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1744240195,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"x-ai/grok-3-beta","name":"xAI: Grok 3 Beta","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000075"},"created":1744240068,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/llama-3.1-nemotron-ultra-253b-v1","name":"NVIDIA: Llama 3.1 Nemotron Ultra 253B v1","pricing":{"prompt":"0.0000006","completion":"0.0000018","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1744115059,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-4-maverick:free","name":"Meta: Llama 4 Maverick (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743881822,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"meta-llama/llama-4-maverick","name":"Meta: Llama 4 Maverick","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.0006684","web_search":"0","internal_reasoning":"0"},"created":1743881822,"top_provider":{"context_length":1048576,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-4-scout:free","name":"Meta: Llama 4 Scout (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743881519,"top_provider":{"context_length":128000,"max_completion_tokens":4028,"is_moderated":true}},{"id":"meta-llama/llama-4-scout","name":"Meta: Llama 4 Scout","pricing":{"prompt":"0.00000008","completion":"0.0000003","request":"0","image":"0.0003342","web_search":"0","internal_reasoning":"0"},"created":1743881519,"top_provider":{"context_length":327680,"max_completion_tokens":16384,"is_moderated":false}},{"id":"allenai/molmo-7b-d","name":"AllenAI: Molmo 7B D","pricing":{"prompt":"0.0000001","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1743023247,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-32b-instruct:free","name":"Qwen: Qwen2.5 VL 32B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742839838,"top_provider":{"context_length":16384,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-32b-instruct","name":"Qwen: Qwen2.5 VL 32B Instruct","pricing":{"prompt":"0.00000005","completion":"0.00000022","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742839838,"top_provider":{"context_length":16384,"max_completion_tokens":16384,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3-0324:free","name":"DeepSeek: DeepSeek V3 0324 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742824755,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat-v3-0324","name":"DeepSeek: DeepSeek V3 0324","pricing":{"prompt":"0.00000024","completion":"0.00000084","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742824755,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"openai/o1-pro","name":"OpenAI: o1-pro","pricing":{"prompt":"0.00015","completion":"0.0006","request":"0","image":"0.21675","web_search":"0","internal_reasoning":"0"},"created":1742423211,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"mistralai/mistral-small-3.1-24b-instruct:free","name":"Mistral: Mistral Small 3.1 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742238937,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-3.1-24b-instruct","name":"Mistral: Mistral Small 3.1 24B","pricing":{"prompt":"0.00000005","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1742238937,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"allenai/olmo-2-0325-32b-instruct","name":"AllenAI: Olmo 2 32B Instruct","pricing":{"prompt":"0.0000002","completion":"0.00000035","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741988556,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"google/gemma-3-4b-it:free","name":"Google: Gemma 3 4B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741905510,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-4b-it","name":"Google: Gemma 3 4B","pricing":{"prompt":"0.00000001703012","completion":"0.0000000681536","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741905510,"top_provider":{"context_length":96000,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-3-12b-it:free","name":"Google: Gemma 3 12B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741902625,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-12b-it","name":"Google: Gemma 3 12B","pricing":{"prompt":"0.00000003","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741902625,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"cohere/command-a","name":"Cohere: Command A","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741894342,"top_provider":{"context_length":256000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"openai/gpt-4o-mini-search-preview","name":"OpenAI: GPT-4o-mini Search Preview","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0.0275","image":"0.000217","web_search":"0","internal_reasoning":"0"},"created":1741818122,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o-search-preview","name":"OpenAI: GPT-4o Search Preview","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0.035","image":"0.003613","web_search":"0","internal_reasoning":"0"},"created":1741817949,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"google/gemma-3-27b-it:free","name":"Google: Gemma 3 27B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741756359,"top_provider":{"context_length":96000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-3-27b-it","name":"Google: Gemma 3 27B","pricing":{"prompt":"0.00000009","completion":"0.00000016","request":"0","image":"0.0000256","web_search":"0","internal_reasoning":"0"},"created":1741756359,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"thedrummer/skyfall-36b-v2","name":"TheDrummer: Skyfall 36B V2","pricing":{"prompt":"0.00000008","completion":"0.00000033","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741636566,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"microsoft/phi-4-multimodal-instruct","name":"Microsoft: Phi 4 Multimodal Instruct","pricing":{"prompt":"0.00000005","completion":"0.0000001","request":"0","image":"0.00017685","web_search":"0","internal_reasoning":"0"},"created":1741396284,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar-reasoning-pro","name":"Perplexity: Sonar Reasoning Pro","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0"},"created":1741313308,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar-pro","name":"Perplexity: Sonar Pro","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0"},"created":1741312423,"top_provider":{"context_length":200000,"max_completion_tokens":8000,"is_moderated":false}},{"id":"perplexity/sonar-deep-research","name":"Perplexity: Sonar Deep Research","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0.005","internal_reasoning":"0.000003"},"created":1741311246,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwq-32b","name":"Qwen: QwQ 32B","pricing":{"prompt":"0.00000015","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1741208814,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/deephermes-3-llama-3-8b-preview:free","name":"Nous: DeepHermes 3 Llama 3 8B Preview (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740719372,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/deephermes-3-llama-3-8b-preview","name":"Nous: DeepHermes 3 Llama 3 8B Preview","pricing":{"prompt":"0.00000003","completion":"0.00000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740719372,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"google/gemini-2.0-flash-lite-001","name":"Google: Gemini 2.0 Flash Lite","pricing":{"prompt":"0.000000075","completion":"0.0000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740506212,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthropic/claude-3.7-sonnet","name":"Anthropic: Claude 3.7 Sonnet","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1740422110,"top_provider":{"context_length":200000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"anthropic/claude-3.7-sonnet:thinking","name":"Anthropic: Claude 3.7 Sonnet (thinking)","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1740422110,"top_provider":{"context_length":200000,"max_completion_tokens":64000,"is_moderated":false}},{"id":"perplexity/r1-1776","name":"Perplexity: R1 1776","pricing":{"prompt":"0.000002","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1740004929,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-saba","name":"Mistral: Saba","pricing":{"prompt":"0.0000002","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739803239,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-mistral-24b:free","name":"Dolphin3.0 Mistral 24B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462019,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cognitivecomputations/dolphin3.0-mistral-24b","name":"Dolphin3.0 Mistral 24B","pricing":{"prompt":"0.00000004","completion":"0.00000017","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739462019,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"meta-llama/llama-guard-3-8b","name":"Llama Guard 3 8B","pricing":{"prompt":"0.00000002","completion":"0.00000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1739401318,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o3-mini-high","name":"OpenAI: o3 Mini High","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1739372611,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"google/gemini-2.0-flash-001","name":"Google: Gemini 2.0 Flash","pricing":{"prompt":"0.0000001","completion":"0.0000004","request":"0","image":"0.0000258","audio":"0.0000007","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000025","input_cache_write":"0.0000001833"},"created":1738769413,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen-vl-plus","name":"Qwen: Qwen VL Plus","pricing":{"prompt":"0.00000021","completion":"0.00000063","request":"0","image":"0.0002688","web_search":"0","internal_reasoning":"0"},"created":1738731255,"top_provider":{"context_length":7500,"max_completion_tokens":1500,"is_moderated":false}},{"id":"aion-labs/aion-1.0","name":"AionLabs: Aion-1.0","pricing":{"prompt":"0.000004","completion":"0.000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738697557,"top_provider":{"context_length":131072,"max_completion_tokens":32768,"is_moderated":false}},{"id":"aion-labs/aion-1.0-mini","name":"AionLabs: Aion-1.0-Mini","pricing":{"prompt":"0.0000007","completion":"0.0000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738697107,"top_provider":{"context_length":131072,"max_completion_tokens":32768,"is_moderated":false}},{"id":"aion-labs/aion-rp-llama-3.1-8b","name":"AionLabs: Aion-RP 1.0 (8B)","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738696718,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen-vl-max","name":"Qwen: Qwen VL Max","pricing":{"prompt":"0.0000008","completion":"0.0000032","request":"0","image":"0.001024","web_search":"0","internal_reasoning":"0"},"created":1738434304,"top_provider":{"context_length":7500,"max_completion_tokens":1500,"is_moderated":false}},{"id":"qwen/qwen-turbo","name":"Qwen: Qwen-Turbo","pricing":{"prompt":"0.00000005","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000002"},"created":1738410974,"top_provider":{"context_length":1000000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-72b-instruct:free","name":"Qwen: Qwen2.5 VL 72B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738410311,"top_provider":{"context_length":131072,"max_completion_tokens":2048,"is_moderated":false}},{"id":"qwen/qwen2.5-vl-72b-instruct","name":"Qwen: Qwen2.5 VL 72B Instruct","pricing":{"prompt":"0.00000008","completion":"0.00000033","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738410311,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"qwen/qwen-plus","name":"Qwen: Qwen-Plus","pricing":{"prompt":"0.0000004","completion":"0.0000012","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000016"},"created":1738409840,"top_provider":{"context_length":131072,"max_completion_tokens":8192,"is_moderated":false}},{"id":"qwen/qwen-max","name":"Qwen: Qwen-Max ","pricing":{"prompt":"0.0000016","completion":"0.0000064","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000064"},"created":1738402289,"top_provider":{"context_length":32768,"max_completion_tokens":8192,"is_moderated":false}},{"id":"openai/o3-mini","name":"OpenAI: o3 Mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1738351721,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"mistralai/mistral-small-24b-instruct-2501:free","name":"Mistral: Mistral Small 3 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738255409,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small-24b-instruct-2501","name":"Mistral: Mistral Small 3","pricing":{"prompt":"0.00000005","completion":"0.00000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738255409,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-qwen-32b","name":"DeepSeek: R1 Distill Qwen 32B","pricing":{"prompt":"0.00000027","completion":"0.00000027","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738194830,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-qwen-14b","name":"DeepSeek: R1 Distill Qwen 14B","pricing":{"prompt":"0.00000015","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738193940,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"perplexity/sonar-reasoning","name":"Perplexity: Sonar Reasoning","pricing":{"prompt":"0.000001","completion":"0.000005","request":"0.005","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738131107,"top_provider":{"context_length":127000,"max_completion_tokens":null,"is_moderated":false}},{"id":"perplexity/sonar","name":"Perplexity: Sonar","pricing":{"prompt":"0.000001","completion":"0.000001","request":"0.005","image":"0","web_search":"0","internal_reasoning":"0"},"created":1738013808,"top_provider":{"context_length":127072,"max_completion_tokens":null,"is_moderated":false}},{"id":"liquid/lfm-7b","name":"Liquid: LFM 7B","pricing":{"prompt":"0.00000001","completion":"0.00000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737806883,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"liquid/lfm-3b","name":"Liquid: LFM 3B","pricing":{"prompt":"0.00000002","completion":"0.00000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737806501,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-llama-70b:free","name":"DeepSeek: R1 Distill Llama 70B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737663169,"top_provider":{"context_length":8192,"max_completion_tokens":4096,"is_moderated":false}},{"id":"deepseek/deepseek-r1-distill-llama-70b","name":"DeepSeek: R1 Distill Llama 70B","pricing":{"prompt":"0.00000003","completion":"0.00000013","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737663169,"top_provider":{"context_length":131072,"max_completion_tokens":131072,"is_moderated":false}},{"id":"deepseek/deepseek-r1:free","name":"DeepSeek: R1 (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737381095,"top_provider":{"context_length":163840,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-r1","name":"DeepSeek: R1","pricing":{"prompt":"0.0000004","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1737381095,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"minimax/minimax-01","name":"MiniMax: MiniMax-01","pricing":{"prompt":"0.0000002","completion":"0.0000011","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736915462,"top_provider":{"context_length":1000192,"max_completion_tokens":1000192,"is_moderated":false}},{"id":"mistralai/codestral-2501","name":"Mistral: Codestral 2501","pricing":{"prompt":"0.0000003","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736895522,"top_provider":{"context_length":262144,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-4","name":"Microsoft: Phi 4","pricing":{"prompt":"0.00000006","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736489872,"top_provider":{"context_length":16384,"max_completion_tokens":null,"is_moderated":false}},{"id":"sao10k/l3.1-70b-hanami-x1","name":"Sao10K: Llama 3.1 70B Hanami x1","pricing":{"prompt":"0.000003","completion":"0.000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1736302854,"top_provider":{"context_length":16000,"max_completion_tokens":null,"is_moderated":false}},{"id":"deepseek/deepseek-chat","name":"DeepSeek: DeepSeek V3","pricing":{"prompt":"0.0000003","completion":"0.00000085","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1735241320,"top_provider":{"context_length":163840,"max_completion_tokens":163840,"is_moderated":false}},{"id":"sao10k/l3.3-euryale-70b","name":"Sao10K: Llama 3.3 Euryale 70B","pricing":{"prompt":"0.00000065","completion":"0.00000075","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1734535928,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/o1","name":"OpenAI: o1","pricing":{"prompt":"0.000015","completion":"0.00006","request":"0","image":"0.021675","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000075"},"created":1734459999,"top_provider":{"context_length":200000,"max_completion_tokens":100000,"is_moderated":true}},{"id":"cohere/command-r7b-12-2024","name":"Cohere: Command R7B (12-2024)","pricing":{"prompt":"0.0000000375","completion":"0.00000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1734158152,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"google/gemini-2.0-flash-exp:free","name":"Google: Gemini 2.0 Flash Experimental (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733937523,"top_provider":{"context_length":1048576,"max_completion_tokens":8192,"is_moderated":false}},{"id":"meta-llama/llama-3.3-70b-instruct:free","name":"Meta: Llama 3.3 70B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733506137,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.3-70b-instruct","name":"Meta: Llama 3.3 70B Instruct","pricing":{"prompt":"0.00000013","completion":"0.00000039","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733506137,"top_provider":{"context_length":131072,"max_completion_tokens":120000,"is_moderated":false}},{"id":"amazon/nova-lite-v1","name":"Amazon: Nova Lite 1.0","pricing":{"prompt":"0.00000006","completion":"0.00000024","request":"0","image":"0.00009","web_search":"0","internal_reasoning":"0"},"created":1733437363,"top_provider":{"context_length":300000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"amazon/nova-micro-v1","name":"Amazon: Nova Micro 1.0","pricing":{"prompt":"0.000000035","completion":"0.00000014","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1733437237,"top_provider":{"context_length":128000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"amazon/nova-pro-v1","name":"Amazon: Nova Pro 1.0","pricing":{"prompt":"0.0000008","completion":"0.0000032","request":"0","image":"0.0012","web_search":"0","internal_reasoning":"0"},"created":1733436303,"top_provider":{"context_length":300000,"max_completion_tokens":5120,"is_moderated":true}},{"id":"openai/gpt-4o-2024-11-20","name":"OpenAI: GPT-4o (2024-11-20)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1732127594,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"mistralai/mistral-large-2411","name":"Mistral Large 2411","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731978685,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-large-2407","name":"Mistral Large 2407","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731978415,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/pixtral-large-2411","name":"Mistral: Pixtral Large 2411","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0.002888","web_search":"0","internal_reasoning":"0"},"created":1731977388,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-coder-32b-instruct:free","name":"Qwen2.5 Coder 32B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731368400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-coder-32b-instruct","name":"Qwen2.5 Coder 32B Instruct","pricing":{"prompt":"0.00000004","completion":"0.00000016","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731368400,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"raifle/sorcererlm-8x22b","name":"SorcererLM 8x22B","pricing":{"prompt":"0.0000045","completion":"0.0000045","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731105083,"top_provider":{"context_length":16000,"max_completion_tokens":null,"is_moderated":false}},{"id":"thedrummer/unslopnemo-12b","name":"TheDrummer: UnslopNemo 12B","pricing":{"prompt":"0.0000004","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1731103448,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthropic/claude-3.5-haiku","name":"Anthropic: Claude 3.5 Haiku","pricing":{"prompt":"0.0000008","completion":"0.000004","request":"0","image":"0","web_search":"0.01","internal_reasoning":"0","input_cache_read":"0.00000008","input_cache_write":"0.000001"},"created":1730678400,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"anthropic/claude-3.5-haiku-20241022","name":"Anthropic: Claude 3.5 Haiku (2024-10-22)","pricing":{"prompt":"0.0000008","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000008","input_cache_write":"0.000001"},"created":1730678400,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthropic/claude-3.5-sonnet","name":"Anthropic: Claude 3.5 Sonnet","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1729555200,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"anthracite-org/magnum-v4-72b","name":"Magnum v4 72B","pricing":{"prompt":"0.0000025","completion":"0.000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729555200,"top_provider":{"context_length":16384,"max_completion_tokens":2048,"is_moderated":false}},{"id":"mistralai/ministral-8b","name":"Mistral: Ministral 8B","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729123200,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/ministral-3b","name":"Mistral: Ministral 3B","pricing":{"prompt":"0.00000004","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729123200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-7b-instruct","name":"Qwen: Qwen2.5 7B Instruct","pricing":{"prompt":"0.00000004","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1729036800,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"nvidia/llama-3.1-nemotron-70b-instruct","name":"NVIDIA: Llama 3.1 Nemotron 70B Instruct","pricing":{"prompt":"0.0000006","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728950400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"inflection/inflection-3-productivity","name":"Inflection: Inflection 3 Productivity","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728604800,"top_provider":{"context_length":8000,"max_completion_tokens":1024,"is_moderated":false}},{"id":"inflection/inflection-3-pi","name":"Inflection: Inflection 3 Pi","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1728604800,"top_provider":{"context_length":8000,"max_completion_tokens":1024,"is_moderated":false}},{"id":"thedrummer/rocinante-12b","name":"TheDrummer: Rocinante 12B","pricing":{"prompt":"0.00000017","completion":"0.00000043","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727654400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"anthracite-org/magnum-v2-72b","name":"Magnum v2 72B","pricing":{"prompt":"0.000003","completion":"0.000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727654400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.2-3b-instruct:free","name":"Meta: Llama 3.2 3B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3.2-3b-instruct","name":"Meta: Llama 3.2 3B Instruct","pricing":{"prompt":"0.00000002","completion":"0.00000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":16384,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-1b-instruct","name":"Meta: Llama 3.2 1B Instruct","pricing":{"prompt":"0.000000005","completion":"0.00000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-11b-vision-instruct","name":"Meta: Llama 3.2 11B Vision Instruct","pricing":{"prompt":"0.000000049","completion":"0.000000049","request":"0","image":"0.00007948","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.2-90b-vision-instruct","name":"Meta: Llama 3.2 90B Vision Instruct","pricing":{"prompt":"0.00000035","completion":"0.0000004","request":"0","image":"0.0005058","web_search":"0","internal_reasoning":"0"},"created":1727222400,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"qwen/qwen-2.5-72b-instruct:free","name":"Qwen2.5 72B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726704000,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"qwen/qwen-2.5-72b-instruct","name":"Qwen2.5 72B Instruct","pricing":{"prompt":"0.00000007","completion":"0.00000026","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726704000,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"neversleep/llama-3.1-lumimaid-8b","name":"NeverSleep: Lumimaid v0.2 8B","pricing":{"prompt":"0.00000009","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1726358400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/o1-mini","name":"OpenAI: o1-mini","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1726099200,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":true}},{"id":"openai/o1-mini-2024-09-12","name":"OpenAI: o1-mini (2024-09-12)","pricing":{"prompt":"0.0000011","completion":"0.0000044","request":"0","image":"0","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000055"},"created":1726099200,"top_provider":{"context_length":128000,"max_completion_tokens":65536,"is_moderated":true}},{"id":"mistralai/pixtral-12b","name":"Mistral: Pixtral 12B","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0.0001445","web_search":"0","internal_reasoning":"0"},"created":1725926400,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"cohere/command-r-08-2024","name":"Cohere: Command R (08-2024)","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724976000,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"cohere/command-r-plus-08-2024","name":"Cohere: Command R+ (08-2024)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724976000,"top_provider":{"context_length":128000,"max_completion_tokens":4000,"is_moderated":true}},{"id":"qwen/qwen-2.5-vl-7b-instruct","name":"Qwen: Qwen2.5-VL 7B Instruct","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0.0001445","web_search":"0","internal_reasoning":"0"},"created":1724803200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"sao10k/l3.1-euryale-70b","name":"Sao10K: Llama 3.1 Euryale 70B v2.2","pricing":{"prompt":"0.00000065","completion":"0.00000075","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724803200,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-3.5-mini-128k-instruct","name":"Microsoft: Phi-3.5 Mini 128K Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1724198400,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/hermes-3-llama-3.1-70b","name":"Nous: Hermes 3 70B Instruct","pricing":{"prompt":"0.0000003","completion":"0.0000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723939200,"top_provider":{"context_length":65000,"max_completion_tokens":null,"is_moderated":false}},{"id":"nousresearch/hermes-3-llama-3.1-405b","name":"Nous: Hermes 3 405B Instruct","pricing":{"prompt":"0.000001","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723766400,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/chatgpt-4o-latest","name":"OpenAI: ChatGPT-4o","pricing":{"prompt":"0.000005","completion":"0.000015","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1723593600,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"sao10k/l3-lunaris-8b","name":"Sao10K: Llama 3 8B Lunaris","pricing":{"prompt":"0.00000004","completion":"0.00000005","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1723507200,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o-2024-08-06","name":"OpenAI: GPT-4o (2024-08-06)","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1722902400,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-405b","name":"Meta: Llama 3.1 405B (base)","pricing":{"prompt":"0.000004","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1722556800,"top_provider":{"context_length":32768,"max_completion_tokens":32768,"is_moderated":false}},{"id":"meta-llama/llama-3.1-405b-instruct","name":"Meta: Llama 3.1 405B Instruct","pricing":{"prompt":"0.0000008","completion":"0.0000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-8b-instruct","name":"Meta: Llama 3.1 8B Instruct","pricing":{"prompt":"0.00000002","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3.1-70b-instruct","name":"Meta: Llama 3.1 70B Instruct","pricing":{"prompt":"0.0000004","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721692800,"top_provider":{"context_length":131072,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-nemo:free","name":"Mistral: Mistral Nemo (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721347200,"top_provider":{"context_length":131072,"max_completion_tokens":128000,"is_moderated":false}},{"id":"mistralai/mistral-nemo","name":"Mistral: Mistral Nemo","pricing":{"prompt":"0.00000002","completion":"0.00000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1721347200,"top_provider":{"context_length":131072,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/gpt-4o-mini-2024-07-18","name":"OpenAI: GPT-4o-mini (2024-07-18)","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1721260800,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o-mini","name":"OpenAI: GPT-4o-mini","pricing":{"prompt":"0.00000015","completion":"0.0000006","request":"0","image":"0.000217","web_search":"0","internal_reasoning":"0","input_cache_read":"0.000000075"},"created":1721260800,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"google/gemma-2-27b-it","name":"Google: Gemma 2 27B","pricing":{"prompt":"0.00000065","completion":"0.00000065","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1720828800,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"google/gemma-2-9b-it:free","name":"Google: Gemma 2 9B (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1719532800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"google/gemma-2-9b-it","name":"Google: Gemma 2 9B","pricing":{"prompt":"0.00000001","completion":"0.00000003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1719532800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"anthropic/claude-3.5-sonnet-20240620","name":"Anthropic: Claude 3.5 Sonnet (2024-06-20)","pricing":{"prompt":"0.000003","completion":"0.000015","request":"0","image":"0.0048","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000003","input_cache_write":"0.00000375"},"created":1718841600,"top_provider":{"context_length":200000,"max_completion_tokens":8192,"is_moderated":true}},{"id":"sao10k/l3-euryale-70b","name":"Sao10k: Llama 3 Euryale 70B v2.1","pricing":{"prompt":"0.00000148","completion":"0.00000148","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1718668800,"top_provider":{"context_length":8192,"max_completion_tokens":8192,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct-v0.3","name":"Mistral: Mistral 7B Instruct v0.3","pricing":{"prompt":"0.000000028","completion":"0.000000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"nousresearch/hermes-2-pro-llama-3-8b","name":"NousResearch: Hermes 2 Pro - Llama-3 8B","pricing":{"prompt":"0.000000025","completion":"0.00000008","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct:free","name":"Mistral: Mistral 7B Instruct (free)","pricing":{"prompt":"0","completion":"0","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct","name":"Mistral: Mistral 7B Instruct","pricing":{"prompt":"0.000000028","completion":"0.000000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716768000,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"microsoft/phi-3-mini-128k-instruct","name":"Microsoft: Phi-3 Mini 128K Instruct","pricing":{"prompt":"0.0000001","completion":"0.0000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716681600,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/phi-3-medium-128k-instruct","name":"Microsoft: Phi-3 Medium 128K Instruct","pricing":{"prompt":"0.000001","completion":"0.000001","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1716508800,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4o","name":"OpenAI: GPT-4o","pricing":{"prompt":"0.0000025","completion":"0.00001","request":"0","image":"0.003613","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000125"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":16384,"is_moderated":true}},{"id":"openai/gpt-4o:extended","name":"OpenAI: GPT-4o (extended)","pricing":{"prompt":"0.000006","completion":"0.000018","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":64000,"is_moderated":true}},{"id":"openai/gpt-4o-2024-05-13","name":"OpenAI: GPT-4o (2024-05-13)","pricing":{"prompt":"0.000005","completion":"0.000015","request":"0","image":"0.007225","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"meta-llama/llama-guard-2-8b","name":"Meta: LlamaGuard 2 8B","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1715558400,"top_provider":{"context_length":8192,"max_completion_tokens":null,"is_moderated":false}},{"id":"meta-llama/llama-3-8b-instruct","name":"Meta: Llama 3 8B Instruct","pricing":{"prompt":"0.00000003","completion":"0.00000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713398400,"top_provider":{"context_length":8192,"max_completion_tokens":16384,"is_moderated":false}},{"id":"meta-llama/llama-3-70b-instruct","name":"Meta: Llama 3 70B Instruct","pricing":{"prompt":"0.0000003","completion":"0.0000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713398400,"top_provider":{"context_length":8192,"max_completion_tokens":16384,"is_moderated":false}},{"id":"mistralai/mixtral-8x22b-instruct","name":"Mistral: Mixtral 8x22B Instruct","pricing":{"prompt":"0.0000009","completion":"0.0000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713312000,"top_provider":{"context_length":65536,"max_completion_tokens":null,"is_moderated":false}},{"id":"microsoft/wizardlm-2-8x22b","name":"WizardLM-2 8x22B","pricing":{"prompt":"0.00000048","completion":"0.00000048","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1713225600,"top_provider":{"context_length":65536,"max_completion_tokens":16384,"is_moderated":false}},{"id":"openai/gpt-4-turbo","name":"OpenAI: GPT-4 Turbo","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0.01445","web_search":"0","internal_reasoning":"0"},"created":1712620800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"anthropic/claude-3-haiku","name":"Anthropic: Claude 3 Haiku","pricing":{"prompt":"0.00000025","completion":"0.00000125","request":"0","image":"0.0004","web_search":"0","internal_reasoning":"0","input_cache_read":"0.00000003","input_cache_write":"0.0000003"},"created":1710288000,"top_provider":{"context_length":200000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"anthropic/claude-3-opus","name":"Anthropic: Claude 3 Opus","pricing":{"prompt":"0.000015","completion":"0.000075","request":"0","image":"0.024","web_search":"0","internal_reasoning":"0","input_cache_read":"0.0000015","input_cache_write":"0.00001875"},"created":1709596800,"top_provider":{"context_length":200000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mistralai/mistral-large","name":"Mistral Large","pricing":{"prompt":"0.000002","completion":"0.000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1708905600,"top_provider":{"context_length":128000,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo-0613","name":"OpenAI: GPT-3.5 Turbo (older v0613)","pricing":{"prompt":"0.000001","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1706140800,"top_provider":{"context_length":4095,"max_completion_tokens":4096,"is_moderated":false}},{"id":"openai/gpt-4-turbo-preview","name":"OpenAI: GPT-4 Turbo Preview","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1706140800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mistralai/mistral-tiny","name":"Mistral Tiny","pricing":{"prompt":"0.00000025","completion":"0.00000025","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1704844800,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-small","name":"Mistral Small","pricing":{"prompt":"0.0000002","completion":"0.0000006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1704844800,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mistral-7b-instruct-v0.2","name":"Mistral: Mistral 7B Instruct v0.2","pricing":{"prompt":"0.0000002","completion":"0.0000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1703721600,"top_provider":{"context_length":32768,"max_completion_tokens":null,"is_moderated":false}},{"id":"mistralai/mixtral-8x7b-instruct","name":"Mistral: Mixtral 8x7B Instruct","pricing":{"prompt":"0.00000054","completion":"0.00000054","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1702166400,"top_provider":{"context_length":32768,"max_completion_tokens":16384,"is_moderated":false}},{"id":"neversleep/noromaid-20b","name":"Noromaid 20B","pricing":{"prompt":"0.000001","completion":"0.00000175","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1700956800,"top_provider":{"context_length":4096,"max_completion_tokens":null,"is_moderated":false}},{"id":"alpindale/goliath-120b","name":"Goliath 120B","pricing":{"prompt":"0.000004","completion":"0.0000055","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1699574400,"top_provider":{"context_length":6144,"max_completion_tokens":512,"is_moderated":false}},{"id":"openrouter/auto","name":"Auto Router","pricing":{"prompt":"-1","completion":"-1"},"created":1699401600,"top_provider":{"context_length":null,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-4-1106-preview","name":"OpenAI: GPT-4 Turbo (older v1106)","pricing":{"prompt":"0.00001","completion":"0.00003","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1699228800,"top_provider":{"context_length":128000,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mistralai/mistral-7b-instruct-v0.1","name":"Mistral: Mistral 7B Instruct v0.1","pricing":{"prompt":"0.00000011","completion":"0.00000019","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1695859200,"top_provider":{"context_length":2824,"max_completion_tokens":null,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo-instruct","name":"OpenAI: GPT-3.5 Turbo Instruct","pricing":{"prompt":"0.0000015","completion":"0.000002","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1695859200,"top_provider":{"context_length":4095,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-3.5-turbo-16k","name":"OpenAI: GPT-3.5 Turbo 16k","pricing":{"prompt":"0.000003","completion":"0.000004","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1693180800,"top_provider":{"context_length":16385,"max_completion_tokens":4096,"is_moderated":true}},{"id":"mancer/weaver","name":"Mancer: Weaver (alpha)","pricing":{"prompt":"0.000001125","completion":"0.000001125","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1690934400,"top_provider":{"context_length":8000,"max_completion_tokens":2000,"is_moderated":false}},{"id":"undi95/remm-slerp-l2-13b","name":"ReMM SLERP 13B","pricing":{"prompt":"0.00000045","completion":"0.00000065","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1689984000,"top_provider":{"context_length":6144,"max_completion_tokens":null,"is_moderated":false}},{"id":"gryphe/mythomax-l2-13b","name":"MythoMax 13B","pricing":{"prompt":"0.00000005","completion":"0.00000009","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1688256000,"top_provider":{"context_length":4096,"max_completion_tokens":4096,"is_moderated":false}},{"id":"openai/gpt-3.5-turbo","name":"OpenAI: GPT-3.5 Turbo","pricing":{"prompt":"0.0000005","completion":"0.0000015","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":16385,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-4-0314","name":"OpenAI: GPT-4 (older v0314)","pricing":{"prompt":"0.00003","completion":"0.00006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":8191,"max_completion_tokens":4096,"is_moderated":true}},{"id":"openai/gpt-4","name":"OpenAI: GPT-4","pricing":{"prompt":"0.00003","completion":"0.00006","request":"0","image":"0","web_search":"0","internal_reasoning":"0"},"created":1685232000,"top_provider":{"context_length":8191,"max_completion_tokens":4096,"is_moderated":true}}]
\ No newline at end of file
diff --git a/packages/kbot/dist/main_node.js b/packages/kbot/dist/main_node.js
index d2d079bf..61a7510d 100644
--- a/packages/kbot/dist/main_node.js
+++ b/packages/kbot/dist/main_node.js
@@ -321287,17 +321287,12 @@ const main_createImage = async (prompt, options) => {
}
}
else if ('text' in part && part.text) {
- // Check if this is a rejection message
- const text = part.text.toLowerCase();
- if (text.includes('cannot fulfill') || text.includes('not able to create') ||
- text.includes('unable to generate') || text.includes('cannot generate') ||
- text.includes('cannot create') || text.includes('not appropriate')) {
- main_dist_in/* logger */.vF.error('Google AI rejected the request:', {
- rejectionMessage: part.text,
- finishReason: candidate.finishReason
- });
- throw new Error(`Request rejected by Google AI: ${part.text}`);
- }
+ // Google AI returned text instead of an image - show this to the user
+ main_dist_in/* logger */.vF.info('Google AI returned text response instead of image:', {
+ textResponse: part.text,
+ finishReason: candidate.finishReason
+ });
+ throw new Error(`Google AI response: ${part.text}`);
}
}
main_dist_in/* logger */.vF.warn('No image data found in API response parts', {
@@ -321389,19 +321384,14 @@ const main_editImage = async (prompt, imagePaths, options) => {
}
}
else if ('text' in part && part.text) {
- // Check if this is a rejection message
- const text = part.text.toLowerCase();
- if (text.includes('cannot fulfill') || text.includes('not able to create') ||
- text.includes('unable to generate') || text.includes('cannot generate') ||
- text.includes('cannot create') || text.includes('not appropriate')) {
- main_dist_in/* logger */.vF.error('Google AI rejected the image edit request:', {
- rejectionMessage: part.text,
- finishReason: candidate.finishReason,
- prompt: prompt.substring(0, 100) + '...',
- imageCount: imagePaths.length
- });
- throw new Error(`Request rejected by Google AI: ${part.text}`);
- }
+ // Google AI returned text instead of an image - show this to the user
+ main_dist_in/* logger */.vF.info('Google AI returned text response instead of image (editImage):', {
+ textResponse: part.text,
+ finishReason: candidate.finishReason,
+ prompt: prompt.substring(0, 100) + '...',
+ imageCount: imagePaths.length
+ });
+ throw new Error(`Google AI response: ${part.text}`);
}
}
main_dist_in/* logger */.vF.warn('No image data found in API response parts (editImage)', {
@@ -321424,7 +321414,7 @@ const main_editImage = async (prompt, imagePaths, options) => {
throw error; // Re-throw to let the caller handle it
}
};
-//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLWdvb2dsZS5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uL3NyYy9saWIvaW1hZ2VzLWdvb2dsZS50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsa0JBQWtCLEVBQVEsTUFBTSx1QkFBdUIsQ0FBQztBQUNqRSxPQUFPLEtBQUssRUFBRSxNQUFNLFNBQVMsQ0FBQztBQUU5QixPQUFPLEVBQUUsVUFBVSxFQUFFLE1BQU0sY0FBYyxDQUFDO0FBQzFDLE9BQU8sRUFBRSxNQUFNLEVBQUUsTUFBTSxhQUFhLENBQUM7QUFDckMsT0FBTyxFQUFFLE1BQU0sRUFBRSxNQUFNLFlBQVksQ0FBQTtBQUVuQyxNQUFNLHVCQUF1QixHQUFHLENBQUMsT0FBcUIsRUFBRSxFQUFFO0lBQ3RELE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNuQyxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7UUFDVixNQUFNLENBQUMsS0FBSyxDQUNSLDhDQUE4QztZQUM5Qyx3RUFBd0UsQ0FDM0UsQ0FBQztRQUNGLE9BQU8sU0FBUyxDQUFDO0lBQ3JCLENBQUM7SUFFRCxJQUFJLE1BQU0sR0FBRyxPQUFPLENBQUMsT0FBTyxJQUFJLE1BQU0sRUFBRSxNQUFNLEVBQUUsR0FBRyxDQUFDO0lBRXBELElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztRQUNWLE1BQU0sQ0FBQyxLQUFLLENBQUMscUdBQXFHLENBQUMsQ0FBQztRQUNwSCxPQUFPLFNBQVMsQ0FBQztJQUNyQixDQUFDO0lBRUQsT0FBTyxJQUFJLGtCQUFrQixDQUFDLE1BQU0sQ0FBQyxDQUFDO0FBQzFDLENBQUMsQ0FBQTtBQUVELE1BQU0sQ0FBQyxNQUFNLFdBQVcsR0FBRyxLQUFLLEVBQUUsTUFBYyxFQUFFLE9BQXFCLEVBQTBCLEVBQUU7SUFDL0YsTUFBTSxFQUFFLEdBQUcsdUJBQXVCLENBQUMsT0FBTyxDQUFDLENBQUM7SUFDNUMsSUFBSSxDQUFDLEVBQUUsRUFBRSxDQUFDO1FBQ04sT0FBTyxJQUFJLENBQUM7SUFDaEIsQ0FBQztJQUVELE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQyxrQkFBa0IsQ0FBQyxFQUFFLEtBQUssRUFBRSxPQUFPLENBQUMsS0FBSyxJQUFJLGdDQUFnQyxFQUFFLENBQUMsQ0FBQztJQUVsRyxJQUFJLENBQUM7UUFDRCxNQUFNLE1BQU0sR0FBRyxNQUFNLEtBQUssQ0FBQyxlQUFlLENBQUMsTUFBTSxDQUFDLENBQUM7UUFFbkQsTUFBTSxRQUFRLEdBQUcsTUFBTSxDQUFDLFFBQVEsQ0FBQztRQUNqQyxNQUFNLENBQUMsS0FBSyxDQUFDLG1DQUFtQyxFQUFFO1lBQzlDLFdBQVcsRUFBRSxDQUFDLENBQUMsUUFBUTtZQUN2QixhQUFhLEVBQUUsQ0FBQyxDQUFDLFFBQVEsRUFBRSxVQUFVO1lBQ3JDLGdCQUFnQixFQUFFLFFBQVEsRUFBRSxVQUFVLEVBQUUsTUFBTTtZQUM5QyxZQUFZLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztTQUNsRCxDQUFDLENBQUM7UUFFSCxJQUFJLENBQUMsUUFBUSxJQUFJLENBQUMsUUFBUSxDQUFDLFVBQVUsSUFBSSxRQUFRLENBQUMsVUFBVSxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUUsQ0FBQztZQUN4RSxNQUFNLENBQUMsS0FBSyxDQUFDLHNEQUFzRCxFQUFFO2dCQUNqRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQzthQUM5QyxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLDJIQUEySCxDQUFDLENBQUM7UUFDakosQ0FBQztRQUVELE1BQU0sU0FBUyxHQUFHLFFBQVEsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFekMsMkNBQTJDO1FBQzNDLElBQUksU0FBUyxDQUFDLFlBQVksSUFBSSxTQUFTLENBQUMsWUFBWSxLQUFLLE1BQU0sRUFBRSxDQUFDO1lBQzlELE1BQU0sb0JBQW9CLEdBQUc7Z0JBQ3pCLGNBQWMsRUFBRSx3SEFBd0g7Z0JBQ3hJLFFBQVEsRUFBRSx5R0FBeUc7Z0JBQ25ILFlBQVksRUFBRSx3SEFBd0g7Z0JBQ3RJLE9BQU8sRUFBRSxnRUFBZ0U7YUFDNUUsQ0FBQztZQUVGLE1BQU0sT0FBTyxHQUFHLG9CQUFvQixDQUFDLFNBQVMsQ0FBQyxZQUFZLENBQUM7Z0JBQzdDLHVDQUF1QyxTQUFTLENBQUMsWUFBWSxFQUFFLENBQUM7WUFFL0UsTUFBTSxDQUFDLEtBQUssQ0FBQyxrREFBa0QsRUFBRTtnQkFDN0QsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO2dCQUNwQyxnQkFBZ0IsRUFBRSxPQUFPO2dCQUN6QixTQUFTLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxTQUFTLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQzthQUNoRCxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGlDQUFpQyxPQUFPLEVBQUUsQ0FBQyxDQUFDO1FBQ2hFLENBQUM7UUFFRCxJQUFJLENBQUMsU0FBUyxDQUFDLE9BQU8sSUFBSSxDQUFDLFNBQVMsQ0FBQyxPQUFPLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDakQsTUFBTSxDQUFDLEtBQUssQ0FBQyxzREFBc0QsRUFBRTtnQkFDakUsU0FBUyxFQUFFLElBQUksQ0FBQyxTQUFTLENBQUMsU0FBUyxFQUFFLElBQUksRUFBRSxDQUFDLENBQUM7YUFDaEQsQ0FBQyxDQUFDO1lBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyx5RUFBeUUsQ0FBQyxDQUFDO1FBQy9GLENBQUM7UUFFRCxNQUFNLEtBQUssR0FBRyxTQUFTLENBQUMsT0FBTyxDQUFDLEtBQUssQ0FBQztRQUN0QyxLQUFLLE1BQU0sSUFBSSxJQUFJLEtBQUssRUFBRSxDQUFDO1lBQ3ZCLElBQUksWUFBWSxJQUFJLElBQUksRUFBRSxDQUFDO2dCQUN2QixNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsVUFBVSxDQUFDO2dCQUNuQyxJQUFJLFVBQVUsRUFBRSxDQUFDO29CQUNiLE9BQU8sTUFBTSxDQUFDLElBQUksQ0FBQyxVQUFVLENBQUMsSUFBSSxFQUFFLFFBQVEsQ0FBQyxDQUFDO2dCQUNsRCxDQUFDO1lBQ0wsQ0FBQztpQkFBTSxJQUFJLE1BQU0sSUFBSSxJQUFJLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDO2dCQUNyQyx1Q0FBdUM7Z0JBQ3ZDLE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsV0FBVyxFQUFFLENBQUM7Z0JBQ3JDLElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsb0JBQW9CLENBQUM7b0JBQ3RFLElBQUksQ0FBQyxRQUFRLENBQUMsb0JBQW9CLENBQUMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLGlCQUFpQixDQUFDO29CQUN2RSxJQUFJLENBQUMsUUFBUSxDQUFDLGVBQWUsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsaUJBQWlCLENBQUMsRUFBRSxDQUFDO29CQUNyRSxNQUFNLENBQUMsS0FBSyxDQUFDLGlDQUFpQyxFQUFFO3dCQUM1QyxnQkFBZ0IsRUFBRSxJQUFJLENBQUMsSUFBSTt3QkFDM0IsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO3FCQUN2QyxDQUFDLENBQUM7b0JBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyxrQ0FBa0MsSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7Z0JBQ25FLENBQUM7WUFDTCxDQUFDO1FBQ0wsQ0FBQztRQUVELE1BQU0sQ0FBQyxJQUFJLENBQUMsMkNBQTJDLEVBQUU7WUFDckQsVUFBVSxFQUFFLEtBQUssQ0FBQyxNQUFNO1lBQ3hCLEtBQUssRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLEtBQUssRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBQ3JDLFlBQVksRUFBRSxTQUFTLENBQUMsWUFBWTtTQUN2QyxDQUFDLENBQUM7UUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGlGQUFpRixDQUFDLENBQUM7SUFFdkcsQ0FBQztJQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7UUFDYixNQUFNLENBQUMsS0FBSyxDQUFDLHFDQUFxQyxFQUFFO1lBQ2hELEtBQUssRUFBRSxLQUFLLENBQUMsT0FBTztZQUNwQixLQUFLLEVBQUUsS0FBSyxDQUFDLEtBQUs7WUFDbEIsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7U0FDM0MsQ0FBQyxDQUFDO1FBQ0gsTUFBTSxLQUFLLENBQUMsQ0FBQyx1Q0FBdUM7SUFDeEQsQ0FBQztBQUNMLENBQUMsQ0FBQTtBQUVELE1BQU0sQ0FBQyxNQUFNLFNBQVMsR0FBRyxLQUFLLEVBQUUsTUFBYyxFQUFFLFVBQW9CLEVBQUUsT0FBcUIsRUFBMEIsRUFBRTtJQUNuSCxNQUFNLEVBQUUsR0FBRyx1QkFBdUIsQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUM1QyxJQUFJLENBQUMsRUFBRSxFQUFFLENBQUM7UUFDTixPQUFPLElBQUksQ0FBQztJQUNoQixDQUFDO0lBRUQsTUFBTSxLQUFLLEdBQUcsRUFBRSxDQUFDLGtCQUFrQixDQUFDLEVBQUUsS0FBSyxFQUFFLE9BQU8sQ0FBQyxLQUFLLElBQUksZ0NBQWdDLEVBQUUsQ0FBQyxDQUFDO0lBRWxHLElBQUksQ0FBQztRQUNELE1BQU0sVUFBVSxHQUFXLFVBQVUsQ0FBQyxHQUFHLENBQUMsU0FBUyxDQUFDLEVBQUU7WUFDbEQsTUFBTSxTQUFTLEdBQUcsRUFBRSxDQUFDLFlBQVksQ0FBQyxTQUFTLENBQUMsQ0FBQztZQUM3QyxNQUFNLFdBQVcsR0FBRyxTQUFTLENBQUMsUUFBUSxDQUFDLFFBQVEsQ0FBQyxDQUFDO1lBQ2pELE1BQU0sUUFBUSxHQUFHLE1BQU0sQ0FBQyxTQUFTLENBQUMsSUFBSSxXQUFXLENBQUM7WUFDbEQsT0FBTztnQkFDSCxVQUFVLEVBQUU7b0JBQ1IsUUFBUTtvQkFDUixJQUFJLEVBQUUsV0FBVztpQkFDcEI7YUFDSixDQUFDO1FBQ04sQ0FBQyxDQUFDLENBQUM7UUFFSCxNQUFNLFFBQVEsR0FBUyxFQUFFLElBQUksRUFBRSxNQUFNLEVBQUUsQ0FBQztRQUN4QyxNQUFNLFdBQVcsR0FBRyxDQUFDLEdBQUcsVUFBVSxFQUFFLFFBQVEsQ0FBQyxDQUFDO1FBRTlDLE1BQU0sTUFBTSxHQUFHLE1BQU0sS0FBSyxDQUFDLGVBQWUsQ0FBQyxXQUFXLENBQUMsQ0FBQztRQUV4RCxNQUFNLFFBQVEsR0FBRyxNQUFNLENBQUMsUUFBUSxDQUFDO1FBQ2pDLE1BQU0sQ0FBQyxLQUFLLENBQUMsK0NBQStDLEVBQUU7WUFDMUQsV0FBVyxFQUFFLENBQUMsQ0FBQyxRQUFRO1lBQ3ZCLGFBQWEsRUFBRSxDQUFDLENBQUMsUUFBUSxFQUFFLFVBQVU7WUFDckMsZ0JBQWdCLEVBQUUsUUFBUSxFQUFFLFVBQVUsRUFBRSxNQUFNO1lBQzlDLFlBQVksRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLFFBQVEsRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDO1NBQ2xELENBQUMsQ0FBQztRQUVILElBQUksQ0FBQyxRQUFRLElBQUksQ0FBQyxRQUFRLENBQUMsVUFBVSxJQUFJLFFBQVEsQ0FBQyxVQUFVLENBQUMsTUFBTSxLQUFLLENBQUMsRUFBRSxDQUFDO1lBQ3hFLE1BQU0sQ0FBQyxLQUFLLENBQUMsa0VBQWtFLEVBQUU7Z0JBQzdFLFFBQVEsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLFFBQVEsRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDO2dCQUMzQyxNQUFNLEVBQUUsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsS0FBSztnQkFDeEMsVUFBVSxFQUFFLFVBQVUsQ0FBQyxNQUFNO2FBQ2hDLENBQUMsQ0FBQztZQUNILE1BQU0sSUFBSSxLQUFLLENBQUMsMkhBQTJILENBQUMsQ0FBQztRQUNqSixDQUFDO1FBRUQsTUFBTSxTQUFTLEdBQUcsUUFBUSxDQUFDLFVBQVUsQ0FBQyxDQUFDLENBQUMsQ0FBQztRQUV6QywyQ0FBMkM7UUFDM0MsSUFBSSxTQUFTLENBQUMsWUFBWSxJQUFJLFNBQVMsQ0FBQyxZQUFZLEtBQUssTUFBTSxFQUFFLENBQUM7WUFDOUQsTUFBTSxvQkFBb0IsR0FBRztnQkFDekIsY0FBYyxFQUFFLHdIQUF3SDtnQkFDeEksUUFBUSxFQUFFLHlHQUF5RztnQkFDbkgsWUFBWSxFQUFFLHdIQUF3SDtnQkFDdEksT0FBTyxFQUFFLGdFQUFnRTthQUM1RSxDQUFDO1lBRUYsTUFBTSxPQUFPLEdBQUcsb0JBQW9CLENBQUMsU0FBUyxDQUFDLFlBQVksQ0FBQztnQkFDN0MsdUNBQXVDLFNBQVMsQ0FBQyxZQUFZLEVBQUUsQ0FBQztZQUUvRSxNQUFNLENBQUMsS0FBSyxDQUFDLHFEQUFxRCxFQUFFO2dCQUNoRSxZQUFZLEVBQUUsU0FBUyxDQUFDLFlBQVk7Z0JBQ3BDLGdCQUFnQixFQUFFLE9BQU87Z0JBQ3pCLFNBQVMsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLFNBQVMsRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDO2dCQUM3QyxNQUFNLEVBQUUsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsS0FBSztnQkFDeEMsVUFBVSxFQUFFLFVBQVUsQ0FBQyxNQUFNO2FBQ2hDLENBQUMsQ0FBQztZQUNILE1BQU0sSUFBSSxLQUFLLENBQUMsaUNBQWlDLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDaEUsQ0FBQztRQUVELElBQUksQ0FBQyxTQUFTLENBQUMsT0FBTyxJQUFJLENBQUMsU0FBUyxDQUFDLE9BQU8sQ0FBQyxLQUFLLEVBQUUsQ0FBQztZQUNqRCxNQUFNLENBQUMsS0FBSyxDQUFDLGtFQUFrRSxFQUFFO2dCQUM3RSxTQUFTLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxTQUFTLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztnQkFDN0MsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7Z0JBQ3hDLFVBQVUsRUFBRSxVQUFVLENBQUMsTUFBTTthQUNoQyxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLHlFQUF5RSxDQUFDLENBQUM7UUFDL0YsQ0FBQztRQUVELE1BQU0sS0FBSyxHQUFHLFNBQVMsQ0FBQyxPQUFPLENBQUMsS0FBSyxDQUFDO1FBQ3RDLEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7WUFDdkIsSUFBSSxZQUFZLElBQUksSUFBSSxFQUFFLENBQUM7Z0JBQ3ZCLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQyxVQUFVLENBQUM7Z0JBQ25DLElBQUksVUFBVSxFQUFFLENBQUM7b0JBQ2IsT0FBTyxNQUFNLENBQUMsSUFBSSxDQUFDLFVBQVUsQ0FBQyxJQUFJLEVBQUUsUUFBUSxDQUFDLENBQUM7Z0JBQ2xELENBQUM7WUFDTCxDQUFDO2lCQUFNLElBQUksTUFBTSxJQUFJLElBQUksSUFBSSxJQUFJLENBQUMsSUFBSSxFQUFFLENBQUM7Z0JBQ3JDLHVDQUF1QztnQkFDdkMsTUFBTSxJQUFJLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsQ0FBQztnQkFDckMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLGdCQUFnQixDQUFDLElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxvQkFBb0IsQ0FBQztvQkFDdEUsSUFBSSxDQUFDLFFBQVEsQ0FBQyxvQkFBb0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsaUJBQWlCLENBQUM7b0JBQ3ZFLElBQUksQ0FBQyxRQUFRLENBQUMsZUFBZSxDQUFDLElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxpQkFBaUIsQ0FBQyxFQUFFLENBQUM7b0JBQ3JFLE1BQU0sQ0FBQyxLQUFLLENBQUMsNENBQTRDLEVBQUU7d0JBQ3ZELGdCQUFnQixFQUFFLElBQUksQ0FBQyxJQUFJO3dCQUMzQixZQUFZLEVBQUUsU0FBUyxDQUFDLFlBQVk7d0JBQ3BDLE1BQU0sRUFBRSxNQUFNLENBQUMsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO3dCQUN4QyxVQUFVLEVBQUUsVUFBVSxDQUFDLE1BQU07cUJBQ2hDLENBQUMsQ0FBQztvQkFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGtDQUFrQyxJQUFJLENBQUMsSUFBSSxFQUFFLENBQUMsQ0FBQztnQkFDbkUsQ0FBQztZQUNMLENBQUM7UUFDTCxDQUFDO1FBRUQsTUFBTSxDQUFDLElBQUksQ0FBQyx1REFBdUQsRUFBRTtZQUNqRSxVQUFVLEVBQUUsS0FBSyxDQUFDLE1BQU07WUFDeEIsS0FBSyxFQUFFLElBQUksQ0FBQyxTQUFTLENBQUMsS0FBSyxFQUFFLElBQUksRUFBRSxDQUFDLENBQUM7WUFDckMsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7WUFDeEMsVUFBVSxFQUFFLFVBQVUsQ0FBQyxNQUFNO1lBQzdCLFlBQVksRUFBRSxTQUFTLENBQUMsWUFBWTtTQUN2QyxDQUFDLENBQUM7UUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGlGQUFpRixDQUFDLENBQUM7SUFFdkcsQ0FBQztJQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7UUFDYixNQUFNLENBQUMsS0FBSyxDQUFDLG1DQUFtQyxFQUFFO1lBQzlDLEtBQUssRUFBRSxLQUFLLENBQUMsT0FBTztZQUNwQixLQUFLLEVBQUUsS0FBSyxDQUFDLEtBQUs7WUFDbEIsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7WUFDeEMsVUFBVSxFQUFFLFVBQVUsQ0FBQyxNQUFNO1lBQzdCLFVBQVUsRUFBRSxVQUFVLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDLEtBQUssQ0FBQyxPQUFPLENBQUMsQ0FBQyxHQUFHLEVBQUUsQ0FBQztTQUMxRCxDQUFDLENBQUM7UUFDSCxNQUFNLEtBQUssQ0FBQyxDQUFDLHVDQUF1QztJQUN4RCxDQUFDO0FBQ0wsQ0FBQyxDQUFBIn0=
+//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLWdvb2dsZS5qcyIsInNvdXJjZVJvb3QiOiIiLCJzb3VyY2VzIjpbIi4uLy4uL3NyYy9saWIvaW1hZ2VzLWdvb2dsZS50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsa0JBQWtCLEVBQVEsTUFBTSx1QkFBdUIsQ0FBQztBQUNqRSxPQUFPLEtBQUssRUFBRSxNQUFNLFNBQVMsQ0FBQztBQUU5QixPQUFPLEVBQUUsVUFBVSxFQUFFLE1BQU0sY0FBYyxDQUFDO0FBQzFDLE9BQU8sRUFBRSxNQUFNLEVBQUUsTUFBTSxhQUFhLENBQUM7QUFDckMsT0FBTyxFQUFFLE1BQU0sRUFBRSxNQUFNLFlBQVksQ0FBQTtBQUVuQyxNQUFNLHVCQUF1QixHQUFHLENBQUMsT0FBcUIsRUFBRSxFQUFFO0lBQ3RELE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNuQyxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7UUFDVixNQUFNLENBQUMsS0FBSyxDQUNSLDhDQUE4QztZQUM5Qyx3RUFBd0UsQ0FDM0UsQ0FBQztRQUNGLE9BQU8sU0FBUyxDQUFDO0lBQ3JCLENBQUM7SUFFRCxJQUFJLE1BQU0sR0FBRyxPQUFPLENBQUMsT0FBTyxJQUFJLE1BQU0sRUFBRSxNQUFNLEVBQUUsR0FBRyxDQUFDO0lBRXBELElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztRQUNWLE1BQU0sQ0FBQyxLQUFLLENBQUMscUdBQXFHLENBQUMsQ0FBQztRQUNwSCxPQUFPLFNBQVMsQ0FBQztJQUNyQixDQUFDO0lBRUQsT0FBTyxJQUFJLGtCQUFrQixDQUFDLE1BQU0sQ0FBQyxDQUFDO0FBQzFDLENBQUMsQ0FBQTtBQUVELE1BQU0sQ0FBQyxNQUFNLFdBQVcsR0FBRyxLQUFLLEVBQUUsTUFBYyxFQUFFLE9BQXFCLEVBQTBCLEVBQUU7SUFDL0YsTUFBTSxFQUFFLEdBQUcsdUJBQXVCLENBQUMsT0FBTyxDQUFDLENBQUM7SUFDNUMsSUFBSSxDQUFDLEVBQUUsRUFBRSxDQUFDO1FBQ04sT0FBTyxJQUFJLENBQUM7SUFDaEIsQ0FBQztJQUVELE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQyxrQkFBa0IsQ0FBQyxFQUFFLEtBQUssRUFBRSxPQUFPLENBQUMsS0FBSyxJQUFJLGdDQUFnQyxFQUFFLENBQUMsQ0FBQztJQUVsRyxJQUFJLENBQUM7UUFDRCxNQUFNLE1BQU0sR0FBRyxNQUFNLEtBQUssQ0FBQyxlQUFlLENBQUMsTUFBTSxDQUFDLENBQUM7UUFFbkQsTUFBTSxRQUFRLEdBQUcsTUFBTSxDQUFDLFFBQVEsQ0FBQztRQUNqQyxNQUFNLENBQUMsS0FBSyxDQUFDLG1DQUFtQyxFQUFFO1lBQzlDLFdBQVcsRUFBRSxDQUFDLENBQUMsUUFBUTtZQUN2QixhQUFhLEVBQUUsQ0FBQyxDQUFDLFFBQVEsRUFBRSxVQUFVO1lBQ3JDLGdCQUFnQixFQUFFLFFBQVEsRUFBRSxVQUFVLEVBQUUsTUFBTTtZQUM5QyxZQUFZLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztTQUNsRCxDQUFDLENBQUM7UUFFSCxJQUFJLENBQUMsUUFBUSxJQUFJLENBQUMsUUFBUSxDQUFDLFVBQVUsSUFBSSxRQUFRLENBQUMsVUFBVSxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUUsQ0FBQztZQUN4RSxNQUFNLENBQUMsS0FBSyxDQUFDLHNEQUFzRCxFQUFFO2dCQUNqRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQzthQUM5QyxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLDJIQUEySCxDQUFDLENBQUM7UUFDakosQ0FBQztRQUVELE1BQU0sU0FBUyxHQUFHLFFBQVEsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFekMsMkNBQTJDO1FBQzNDLElBQUksU0FBUyxDQUFDLFlBQVksSUFBSSxTQUFTLENBQUMsWUFBWSxLQUFLLE1BQU0sRUFBRSxDQUFDO1lBQzlELE1BQU0sb0JBQW9CLEdBQUc7Z0JBQ3pCLGNBQWMsRUFBRSx3SEFBd0g7Z0JBQ3hJLFFBQVEsRUFBRSx5R0FBeUc7Z0JBQ25ILFlBQVksRUFBRSx3SEFBd0g7Z0JBQ3RJLE9BQU8sRUFBRSxnRUFBZ0U7YUFDNUUsQ0FBQztZQUVGLE1BQU0sT0FBTyxHQUFHLG9CQUFvQixDQUFDLFNBQVMsQ0FBQyxZQUFZLENBQUM7Z0JBQzdDLHVDQUF1QyxTQUFTLENBQUMsWUFBWSxFQUFFLENBQUM7WUFFL0UsTUFBTSxDQUFDLEtBQUssQ0FBQyxrREFBa0QsRUFBRTtnQkFDN0QsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO2dCQUNwQyxnQkFBZ0IsRUFBRSxPQUFPO2dCQUN6QixTQUFTLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxTQUFTLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQzthQUNoRCxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGlDQUFpQyxPQUFPLEVBQUUsQ0FBQyxDQUFDO1FBQ2hFLENBQUM7UUFFRCxJQUFJLENBQUMsU0FBUyxDQUFDLE9BQU8sSUFBSSxDQUFDLFNBQVMsQ0FBQyxPQUFPLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDakQsTUFBTSxDQUFDLEtBQUssQ0FBQyxzREFBc0QsRUFBRTtnQkFDakUsU0FBUyxFQUFFLElBQUksQ0FBQyxTQUFTLENBQUMsU0FBUyxFQUFFLElBQUksRUFBRSxDQUFDLENBQUM7YUFDaEQsQ0FBQyxDQUFDO1lBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyx5RUFBeUUsQ0FBQyxDQUFDO1FBQy9GLENBQUM7UUFFRCxNQUFNLEtBQUssR0FBRyxTQUFTLENBQUMsT0FBTyxDQUFDLEtBQUssQ0FBQztRQUN0QyxLQUFLLE1BQU0sSUFBSSxJQUFJLEtBQUssRUFBRSxDQUFDO1lBQ3ZCLElBQUksWUFBWSxJQUFJLElBQUksRUFBRSxDQUFDO2dCQUN2QixNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsVUFBVSxDQUFDO2dCQUNuQyxJQUFJLFVBQVUsRUFBRSxDQUFDO29CQUNiLE9BQU8sTUFBTSxDQUFDLElBQUksQ0FBQyxVQUFVLENBQUMsSUFBSSxFQUFFLFFBQVEsQ0FBQyxDQUFDO2dCQUNsRCxDQUFDO1lBQ0wsQ0FBQztpQkFBTSxJQUFJLE1BQU0sSUFBSSxJQUFJLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDO2dCQUNyQyxzRUFBc0U7Z0JBQ3RFLE1BQU0sQ0FBQyxJQUFJLENBQUMsb0RBQW9ELEVBQUU7b0JBQzlELFlBQVksRUFBRSxJQUFJLENBQUMsSUFBSTtvQkFDdkIsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO2lCQUN2QyxDQUFDLENBQUM7Z0JBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyx1QkFBdUIsSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7WUFDeEQsQ0FBQztRQUNMLENBQUM7UUFFRCxNQUFNLENBQUMsSUFBSSxDQUFDLDJDQUEyQyxFQUFFO1lBQ3JELFVBQVUsRUFBRSxLQUFLLENBQUMsTUFBTTtZQUN4QixLQUFLLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxLQUFLLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztZQUNyQyxZQUFZLEVBQUUsU0FBUyxDQUFDLFlBQVk7U0FDdkMsQ0FBQyxDQUFDO1FBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyxpRkFBaUYsQ0FBQyxDQUFDO0lBRXZHLENBQUM7SUFBQyxPQUFPLEtBQUssRUFBRSxDQUFDO1FBQ2IsTUFBTSxDQUFDLEtBQUssQ0FBQyxxQ0FBcUMsRUFBRTtZQUNoRCxLQUFLLEVBQUUsS0FBSyxDQUFDLE9BQU87WUFDcEIsS0FBSyxFQUFFLEtBQUssQ0FBQyxLQUFLO1lBQ2xCLE1BQU0sRUFBRSxNQUFNLENBQUMsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO1NBQzNDLENBQUMsQ0FBQztRQUNILE1BQU0sS0FBSyxDQUFDLENBQUMsdUNBQXVDO0lBQ3hELENBQUM7QUFDTCxDQUFDLENBQUE7QUFFRCxNQUFNLENBQUMsTUFBTSxTQUFTLEdBQUcsS0FBSyxFQUFFLE1BQWMsRUFBRSxVQUFvQixFQUFFLE9BQXFCLEVBQTBCLEVBQUU7SUFDbkgsTUFBTSxFQUFFLEdBQUcsdUJBQXVCLENBQUMsT0FBTyxDQUFDLENBQUM7SUFDNUMsSUFBSSxDQUFDLEVBQUUsRUFBRSxDQUFDO1FBQ04sT0FBTyxJQUFJLENBQUM7SUFDaEIsQ0FBQztJQUVELE1BQU0sS0FBSyxHQUFHLEVBQUUsQ0FBQyxrQkFBa0IsQ0FBQyxFQUFFLEtBQUssRUFBRSxPQUFPLENBQUMsS0FBSyxJQUFJLGdDQUFnQyxFQUFFLENBQUMsQ0FBQztJQUVsRyxJQUFJLENBQUM7UUFDRCxNQUFNLFVBQVUsR0FBVyxVQUFVLENBQUMsR0FBRyxDQUFDLFNBQVMsQ0FBQyxFQUFFO1lBQ2xELE1BQU0sU0FBUyxHQUFHLEVBQUUsQ0FBQyxZQUFZLENBQUMsU0FBUyxDQUFDLENBQUM7WUFDN0MsTUFBTSxXQUFXLEdBQUcsU0FBUyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztZQUNqRCxNQUFNLFFBQVEsR0FBRyxNQUFNLENBQUMsU0FBUyxDQUFDLElBQUksV0FBVyxDQUFDO1lBQ2xELE9BQU87Z0JBQ0gsVUFBVSxFQUFFO29CQUNSLFFBQVE7b0JBQ1IsSUFBSSxFQUFFLFdBQVc7aUJBQ3BCO2FBQ0osQ0FBQztRQUNOLENBQUMsQ0FBQyxDQUFDO1FBRUgsTUFBTSxRQUFRLEdBQVMsRUFBRSxJQUFJLEVBQUUsTUFBTSxFQUFFLENBQUM7UUFDeEMsTUFBTSxXQUFXLEdBQUcsQ0FBQyxHQUFHLFVBQVUsRUFBRSxRQUFRLENBQUMsQ0FBQztRQUU5QyxNQUFNLE1BQU0sR0FBRyxNQUFNLEtBQUssQ0FBQyxlQUFlLENBQUMsV0FBVyxDQUFDLENBQUM7UUFFeEQsTUFBTSxRQUFRLEdBQUcsTUFBTSxDQUFDLFFBQVEsQ0FBQztRQUNqQyxNQUFNLENBQUMsS0FBSyxDQUFDLCtDQUErQyxFQUFFO1lBQzFELFdBQVcsRUFBRSxDQUFDLENBQUMsUUFBUTtZQUN2QixhQUFhLEVBQUUsQ0FBQyxDQUFDLFFBQVEsRUFBRSxVQUFVO1lBQ3JDLGdCQUFnQixFQUFFLFFBQVEsRUFBRSxVQUFVLEVBQUUsTUFBTTtZQUM5QyxZQUFZLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztTQUNsRCxDQUFDLENBQUM7UUFFSCxJQUFJLENBQUMsUUFBUSxJQUFJLENBQUMsUUFBUSxDQUFDLFVBQVUsSUFBSSxRQUFRLENBQUMsVUFBVSxDQUFDLE1BQU0sS0FBSyxDQUFDLEVBQUUsQ0FBQztZQUN4RSxNQUFNLENBQUMsS0FBSyxDQUFDLGtFQUFrRSxFQUFFO2dCQUM3RSxRQUFRLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxRQUFRLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztnQkFDM0MsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7Z0JBQ3hDLFVBQVUsRUFBRSxVQUFVLENBQUMsTUFBTTthQUNoQyxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLDJIQUEySCxDQUFDLENBQUM7UUFDakosQ0FBQztRQUVELE1BQU0sU0FBUyxHQUFHLFFBQVEsQ0FBQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUM7UUFFekMsMkNBQTJDO1FBQzNDLElBQUksU0FBUyxDQUFDLFlBQVksSUFBSSxTQUFTLENBQUMsWUFBWSxLQUFLLE1BQU0sRUFBRSxDQUFDO1lBQzlELE1BQU0sb0JBQW9CLEdBQUc7Z0JBQ3pCLGNBQWMsRUFBRSx3SEFBd0g7Z0JBQ3hJLFFBQVEsRUFBRSx5R0FBeUc7Z0JBQ25ILFlBQVksRUFBRSx3SEFBd0g7Z0JBQ3RJLE9BQU8sRUFBRSxnRUFBZ0U7YUFDNUUsQ0FBQztZQUVGLE1BQU0sT0FBTyxHQUFHLG9CQUFvQixDQUFDLFNBQVMsQ0FBQyxZQUFZLENBQUM7Z0JBQzdDLHVDQUF1QyxTQUFTLENBQUMsWUFBWSxFQUFFLENBQUM7WUFFL0UsTUFBTSxDQUFDLEtBQUssQ0FBQyxxREFBcUQsRUFBRTtnQkFDaEUsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO2dCQUNwQyxnQkFBZ0IsRUFBRSxPQUFPO2dCQUN6QixTQUFTLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxTQUFTLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztnQkFDN0MsTUFBTSxFQUFFLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxHQUFHLEtBQUs7Z0JBQ3hDLFVBQVUsRUFBRSxVQUFVLENBQUMsTUFBTTthQUNoQyxDQUFDLENBQUM7WUFDSCxNQUFNLElBQUksS0FBSyxDQUFDLGlDQUFpQyxPQUFPLEVBQUUsQ0FBQyxDQUFDO1FBQ2hFLENBQUM7UUFFRCxJQUFJLENBQUMsU0FBUyxDQUFDLE9BQU8sSUFBSSxDQUFDLFNBQVMsQ0FBQyxPQUFPLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDakQsTUFBTSxDQUFDLEtBQUssQ0FBQyxrRUFBa0UsRUFBRTtnQkFDN0UsU0FBUyxFQUFFLElBQUksQ0FBQyxTQUFTLENBQUMsU0FBUyxFQUFFLElBQUksRUFBRSxDQUFDLENBQUM7Z0JBQzdDLE1BQU0sRUFBRSxNQUFNLENBQUMsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO2dCQUN4QyxVQUFVLEVBQUUsVUFBVSxDQUFDLE1BQU07YUFDaEMsQ0FBQyxDQUFDO1lBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyx5RUFBeUUsQ0FBQyxDQUFDO1FBQy9GLENBQUM7UUFFRCxNQUFNLEtBQUssR0FBRyxTQUFTLENBQUMsT0FBTyxDQUFDLEtBQUssQ0FBQztRQUN0QyxLQUFLLE1BQU0sSUFBSSxJQUFJLEtBQUssRUFBRSxDQUFDO1lBQ3ZCLElBQUksWUFBWSxJQUFJLElBQUksRUFBRSxDQUFDO2dCQUN2QixNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsVUFBVSxDQUFDO2dCQUNuQyxJQUFJLFVBQVUsRUFBRSxDQUFDO29CQUNiLE9BQU8sTUFBTSxDQUFDLElBQUksQ0FBQyxVQUFVLENBQUMsSUFBSSxFQUFFLFFBQVEsQ0FBQyxDQUFDO2dCQUNsRCxDQUFDO1lBQ0wsQ0FBQztpQkFBTSxJQUFJLE1BQU0sSUFBSSxJQUFJLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDO2dCQUNyQyxzRUFBc0U7Z0JBQ3RFLE1BQU0sQ0FBQyxJQUFJLENBQUMsZ0VBQWdFLEVBQUU7b0JBQzFFLFlBQVksRUFBRSxJQUFJLENBQUMsSUFBSTtvQkFDdkIsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO29CQUNwQyxNQUFNLEVBQUUsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsS0FBSztvQkFDeEMsVUFBVSxFQUFFLFVBQVUsQ0FBQyxNQUFNO2lCQUNoQyxDQUFDLENBQUM7Z0JBQ0gsTUFBTSxJQUFJLEtBQUssQ0FBQyx1QkFBdUIsSUFBSSxDQUFDLElBQUksRUFBRSxDQUFDLENBQUM7WUFDeEQsQ0FBQztRQUNMLENBQUM7UUFFRCxNQUFNLENBQUMsSUFBSSxDQUFDLHVEQUF1RCxFQUFFO1lBQ2pFLFVBQVUsRUFBRSxLQUFLLENBQUMsTUFBTTtZQUN4QixLQUFLLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxLQUFLLEVBQUUsSUFBSSxFQUFFLENBQUMsQ0FBQztZQUNyQyxNQUFNLEVBQUUsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsS0FBSztZQUN4QyxVQUFVLEVBQUUsVUFBVSxDQUFDLE1BQU07WUFDN0IsWUFBWSxFQUFFLFNBQVMsQ0FBQyxZQUFZO1NBQ3ZDLENBQUMsQ0FBQztRQUNILE1BQU0sSUFBSSxLQUFLLENBQUMsaUZBQWlGLENBQUMsQ0FBQztJQUV2RyxDQUFDO0lBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztRQUNiLE1BQU0sQ0FBQyxLQUFLLENBQUMsbUNBQW1DLEVBQUU7WUFDOUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxPQUFPO1lBQ3BCLEtBQUssRUFBRSxLQUFLLENBQUMsS0FBSztZQUNsQixNQUFNLEVBQUUsTUFBTSxDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLEdBQUcsS0FBSztZQUN4QyxVQUFVLEVBQUUsVUFBVSxDQUFDLE1BQU07WUFDN0IsVUFBVSxFQUFFLFVBQVUsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLEdBQUcsRUFBRSxDQUFDO1NBQzFELENBQUMsQ0FBQztRQUNILE1BQU0sS0FBSyxDQUFDLENBQUMsdUNBQXVDO0lBQ3hELENBQUM7QUFDTCxDQUFDLENBQUEifQ==
// EXTERNAL MODULE: ./dist-in/prompt.js + 6 modules
var main_dist_in_prompt = __webpack_require__(31321);
// EXTERNAL MODULE: external "node:child_process"
@@ -321916,7 +321906,7 @@ const main_imageCommand = async (argv) => {
logger.error('Failed to parse options or generate image:', error.message, error.issues, error.stack);
}
};
-//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL2NvbW1hbmRzL2ltYWdlcy50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsQ0FBQyxFQUFFLE1BQU0sS0FBSyxDQUFDO0FBQ3hCLE9BQU8sS0FBSyxJQUFJLE1BQU0sV0FBVyxDQUFDO0FBQ2xDLE9BQU8sRUFBRSxJQUFJLElBQUksS0FBSyxFQUFFLE1BQU0sb0JBQW9CLENBQUM7QUFDbkQsT0FBTyxFQUFFLElBQUksSUFBSSxNQUFNLEVBQUUsTUFBTSxxQkFBcUIsQ0FBQztBQUNyRCxPQUFPLEVBQ0gsWUFBWSxFQUNaLFFBQVEsRUFDUixVQUFVLEVBQ2IsTUFBTSxTQUFTLENBQUM7QUFDakIsT0FBTyxFQUFXLE1BQU0sRUFBRSxNQUFNLE9BQU8sQ0FBQztBQUN4QyxPQUFPLEVBQUUsU0FBUyxFQUFFLE1BQU0saUJBQWlCLENBQUM7QUFDNUMsT0FBTyxFQUFFLE9BQU8sRUFBRSxNQUFNLG1CQUFtQixDQUFDO0FBRTVDLE9BQU8sRUFBRSxPQUFPLEVBQUUsUUFBUSxFQUFFLE1BQU0sMkJBQTJCLENBQUM7QUFFOUQsT0FBTyxFQUFFLGFBQWEsRUFBRSxNQUFNLGtCQUFrQixDQUFDO0FBQ2pELE9BQU8sRUFBRSxXQUFXLEVBQUUsU0FBUyxFQUFFLE1BQU0seUJBQXlCLENBQUM7QUFDakUsT0FBTyxFQUFFLE1BQU0sSUFBSSxhQUFhLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFDdkQsT0FBTyxFQUFFLEtBQUssRUFBRSxNQUFNLG9CQUFvQixDQUFDO0FBQzNDLE9BQU8sRUFBRSxVQUFVLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFFMUMsU0FBUyxzQkFBc0IsQ0FBQyxHQUF1QixFQUFFLFFBQWtCO0lBQ3ZFLElBQUksTUFBYyxDQUFDO0lBRW5CLElBQUksR0FBRyxFQUFFLENBQUM7UUFDTixNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFDO1FBQ3RDLE1BQU0sT0FBTyxHQUFHLE1BQU0sQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUM7UUFDbkUsSUFBSSxPQUFPLElBQUksT0FBTyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7WUFDbkMsTUFBTSxHQUFHLFdBQVcsQ0FBQztRQUN6QixDQUFDO2FBQU0sQ0FBQztZQUNKLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFdBQVcsQ0FBQyxDQUFDO1FBQ3ZDLENBQUM7SUFDTCxDQUFDO1NBQU0sSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQzdCLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3ZDLENBQUM7U0FBTSxDQUFDO1FBQ0osTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLGtDQUFrQztJQUM5RCxDQUFDO0lBRUQsSUFBSSxZQUFZLENBQUM7SUFDakIsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRVYsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQ3RCLE1BQU0sZ0JBQWdCLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9FLE1BQU0sS0FBSyxHQUFHLGdCQUFnQixDQUFDLEtBQUssQ0FBQyxhQUFhLENBQUMsQ0FBQztRQUNwRCxJQUFJLEtBQUssSUFBSSxLQUFLLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDdkIsWUFBWSxHQUFHLGdCQUFnQixDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO1lBQzFELENBQUMsR0FBRyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNuQyxDQUFDO2FBQU0sQ0FBQztZQUNKLFlBQVksR0FBRyxnQkFBZ0IsQ0FBQztRQUNwQyxDQUFDO0lBQ0wsQ0FBQztTQUFNLENBQUM7UUFDSixZQUFZLEdBQUcsV0FBVyxDQUFDO0lBQy9CLENBQUM7SUFFRCxJQUFJLFdBQVcsQ0FBQztJQUNoQixJQUFJLFlBQVksQ0FBQztJQUNqQixHQUFHLENBQUM7UUFDQSxXQUFXLEdBQUcsR0FBRyxZQUFZLFFBQVEsQ0FBQyxNQUFNLENBQUM7UUFDN0MsWUFBWSxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLFdBQVcsQ0FBQyxDQUFDO1FBQ2pELENBQUMsRUFBRSxDQUFDO0lBQ1IsQ0FBQyxRQUFRLE1BQU0sQ0FBQyxZQUFZLENBQUMsRUFBRTtJQUUvQixPQUFPLFlBQVksQ0FBQztBQUN4QixDQUFDO0FBRUQsU0FBUyxhQUFhO0lBRWxCLHNFQUFzRTtJQUN0RSxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLElBQUksR0FBRyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUM7SUFDbEUsb0ZBQW9GO0lBQ3BGLE1BQU0sY0FBYyxHQUFHLE9BQU8sQ0FBQyxRQUFRLEtBQUssT0FBTyxJQUFJLFNBQVMsQ0FBQyxVQUFVLENBQUMsR0FBRyxDQUFDO1FBQzVFLENBQUMsQ0FBQyxTQUFTLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQztRQUN4QixDQUFDLENBQUMsU0FBUyxDQUFDO0lBRVosTUFBTSxXQUFXLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxjQUFjLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO0lBRWpFLCtEQUErRDtJQUMvRCxJQUFJLFdBQW1CLENBQUM7SUFDeEIsSUFBSSxjQUFzQixDQUFDO0lBRTNCLFFBQVEsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQ3ZCLEtBQUssT0FBTztZQUNSLFdBQVcsR0FBRyxRQUFRLENBQUM7WUFDdkIsY0FBYyxHQUFHLGVBQWUsQ0FBQztZQUNqQyxNQUFNO1FBQ1YsS0FBSyxRQUFRO1lBQ1QsV0FBVyxHQUFHLFFBQVEsQ0FBQztZQUN2QixjQUFjLEdBQUcsV0FBVyxDQUFDO1lBQzdCLE1BQU07UUFDVixLQUFLLE9BQU87WUFDUixXQUFXLEdBQUcsVUFBVSxDQUFDO1lBQ3pCLGNBQWMsR0FBRyxXQUFXLENBQUM7WUFDN0IsTUFBTTtRQUNWO1lBQ0ksTUFBTSxJQUFJLEtBQUssQ0FBQyx5QkFBeUIsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUM7SUFDckUsQ0FBQztJQUVELE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsTUFBTSxFQUFFLFdBQVcsRUFBRSxjQUFjLENBQUMsQ0FBQztBQUN2RSxDQUFDO0FBRUQsTUFBTSxDQUFDLE1BQU0sa0JBQWtCLEdBQUcsR0FBRyxFQUFFO0lBQ25DLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDLElBQUksQ0FBQztRQUNwQyxNQUFNLEVBQUUsSUFBSTtRQUNaLE9BQU8sRUFBRSxJQUFJO1FBQ2IsR0FBRyxFQUFFLElBQUk7UUFDVCxLQUFLLEVBQUUsSUFBSTtRQUNYLFFBQVEsRUFBRSxJQUFJO1FBQ2QsTUFBTSxFQUFFLElBQUk7UUFDWixPQUFPLEVBQUUsSUFBSTtRQUNiLEdBQUcsRUFBRSxJQUFJO0tBQ1osQ0FBQyxDQUFDO0lBRUgsT0FBTyxVQUFVLENBQUMsTUFBTSxDQUFDO1FBQ3JCLEdBQUcsRUFBRSxDQUFDLENBQUMsT0FBTyxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDBCQUEwQixDQUFDO1FBQ2hFLEtBQUssRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsT0FBTyxDQUFDLGdDQUFnQyxDQUFDLENBQUMsUUFBUSxDQUFDLCtDQUErQyxDQUFDO1FBQ3JILEdBQUcsRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxDQUFDLGtEQUFrRCxDQUFDO1FBQzVFLE1BQU0sRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDJDQUEyQyxDQUFDO0tBQ3RGLENBQUMsQ0FBQztBQUNQLENBQUMsQ0FBQTtBQUVELEtBQUssVUFBVSxxQkFBcUIsQ0FBQyxJQUFTO0lBQzFDLE1BQU0sTUFBTSxHQUFHLElBQUksTUFBTSxDQUFVO1FBQy9CLFFBQVEsRUFBRSxDQUFDLEVBQUUsOEJBQThCO1FBQzNDLGlCQUFpQixFQUFFLHdFQUF3RTtLQUM5RixDQUFDLENBQUM7SUFFSCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsUUFBUSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQ3BDLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDO1FBQ25DLE1BQU0sQ0FBQyxJQUFJLENBQUMsa0JBQWtCLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDNUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDO1lBQ3RCLE9BQU8sTUFBTSxDQUFDLElBQUksS0FBSyxDQUFDLGlDQUFpQyxVQUFVLDhFQUE4RSxDQUFDLENBQUMsQ0FBQztRQUN4SixDQUFDO1FBRUQsd0JBQXdCO1FBQ3hCLE1BQU0sSUFBSSxHQUFhLEVBQUUsQ0FBQztRQUUxQixvQkFBb0I7UUFDcEIsSUFBSSxJQUFJLENBQUMsT0FBTyxFQUFFLENBQUM7WUFDZixNQUFNLFFBQVEsR0FBRyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7WUFDN0UsTUFBTSxnQkFBZ0IsR0FBRyxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzVELElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxnQkFBZ0IsQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxjQUFjO1FBQ2QsTUFBTSxNQUFNLEdBQUcsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO1FBQ2hDLE1BQU0sTUFBTSxHQUFHLElBQUksQ0FBQyxPQUFPLElBQUksTUFBTSxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUM7UUFDbkQsSUFBSSxNQUFNLEVBQUUsQ0FBQztZQUNULElBQUksQ0FBQyxJQUFJLENBQUMsV0FBVyxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxVQUFVO1FBQ1YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDWCxJQUFJLENBQUMsSUFBSSxDQUFDLE9BQU8sRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUM7UUFDakMsQ0FBQztRQUVELGFBQWE7UUFDYixJQUFJLElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztZQUNkLElBQUksQ0FBQyxJQUFJLENBQUMsVUFBVSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUN2QyxDQUFDO1FBRUQsTUFBTSxZQUFZLEdBQUcsS0FBSyxDQUFDLFVBQVUsRUFBRSxJQUFJLEVBQUUsRUFBRSxLQUFLLEVBQUUsQ0FBQyxNQUFNLEVBQUUsTUFBTSxFQUFFLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUVsRixJQUFJLE1BQU0sR0FBRyxFQUFFLENBQUM7UUFDaEIsSUFBSSxXQUFXLEdBQUcsRUFBRSxDQUFDO1FBRXJCLFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxLQUFLLEVBQUUsSUFBSSxFQUFFLEVBQUU7WUFDMUMsTUFBTSxLQUFLLEdBQUcsSUFBSSxDQUFDLFFBQVEsRUFBRSxDQUFDO1lBRTlCLHlDQUF5QztZQUN6QyxNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBQzVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNqQyxJQUFJLE9BQU8sQ0FBQyxJQUFJLEtBQUssZ0JBQWdCLEVBQUUsQ0FBQzt3QkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQyxxQ0FBcUMsQ0FBQyxDQUFDO3dCQUVuRCwyQ0FBMkM7d0JBQzNDLE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDaEMsTUFBTSxNQUFNLEdBQUcsSUFBSSxDQUFDLE9BQU8sSUFBSSxNQUFNLEVBQUUsTUFBTSxFQUFFLEdBQUcsQ0FBQzt3QkFDbkQsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDO3dCQUNuRyxNQUFNLGdCQUFnQixHQUFHLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBRTVELE1BQU0sY0FBYyxHQUFHOzRCQUNuQixHQUFHLEVBQUUsNEJBQTRCOzRCQUNqQyxNQUFNLEVBQUUsSUFBSSxDQUFDLE1BQU0sSUFBSSxJQUFJOzRCQUMzQixHQUFHLEVBQUUsSUFBSSxDQUFDLEdBQUcsSUFBSSxJQUFJOzRCQUNyQixNQUFNLEVBQUUsTUFBTSxJQUFJLElBQUk7NEJBQ3RCLEtBQUssRUFBRSxnQkFBZ0I7eUJBQzFCLENBQUM7d0JBRUYsTUFBTSxVQUFVLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxjQUFjLENBQUMsQ0FBQzt3QkFDbEQsTUFBTSxDQUFDLElBQUksQ0FBQyw2QkFBNkIsRUFBRSxVQUFVLENBQUMsQ0FBQzt3QkFDdkQsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQyxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxFQUFFLGNBQWMsQ0FBQyxDQUFDO3dCQUU5RCxrQkFBa0I7d0JBQ2xCLEtBQUssTUFBTSxTQUFTLElBQUksZ0JBQWdCLEVBQUUsQ0FBQzs0QkFDdkMsSUFBSSxDQUFDO2dDQUNELElBQUksTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0NBQ3BCLE1BQU0sV0FBVyxHQUFHLFlBQVksQ0FBQyxTQUFTLENBQUMsQ0FBQztvQ0FDNUMsTUFBTSxNQUFNLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztvQ0FDOUMsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQyxXQUFXLEVBQUUsS0FBSyxNQUFNLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsWUFBWSxDQUFDO29DQUMvRixNQUFNLFFBQVEsR0FBRyxJQUFJLENBQUMsUUFBUSxDQUFDLFNBQVMsQ0FBQyxDQUFDO29DQUUxQyxNQUFNLGFBQWEsR0FBRzt3Q0FDbEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsTUFBTTt3Q0FDTixRQUFRO3dDQUNSLFFBQVEsRUFBRSxTQUFTO3FDQUN0QixDQUFDO29DQUVGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7b0NBQ2hFLE1BQU0sQ0FBQyxJQUFJLENBQUMsdUJBQXVCLFFBQVEsS0FBSyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxNQUFNLEdBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDO2dDQUN6RixDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLHlCQUF5QixTQUFTLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7NEJBQ3RFLENBQUM7d0JBQ0wsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxnQkFBZ0IsRUFBRSxDQUFDO3dCQUMzQyxNQUFNLENBQUMsSUFBSSxDQUFDLHFDQUFxQyxDQUFDLENBQUM7d0JBQ25ELE1BQU0sWUFBWSxHQUFHLE9BQU8sQ0FBQyxJQUFJLENBQUM7d0JBQ2xDLElBQUksWUFBWSxJQUFJLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDOzRCQUN6QyxJQUFJLENBQUM7Z0NBQ0QsSUFBSSxNQUFNLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQztvQ0FDdkIsVUFBVSxDQUFDLFlBQVksQ0FBQyxDQUFDO29DQUN6QixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxZQUFZLEVBQUUsQ0FBQyxDQUFDO29DQUM1RCxNQUFNLGVBQWUsR0FBRzt3Q0FDcEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsSUFBSSxFQUFFLFlBQVk7cUNBQ3JCLENBQUM7b0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxlQUFlLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDdEUsQ0FBQztxQ0FBTSxDQUFDO29DQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUNBQW1DLFlBQVksRUFBRSxDQUFDLENBQUM7b0NBQy9ELE1BQU0sYUFBYSxHQUFHO3dDQUNsQixHQUFHLEVBQUUscUJBQXFCO3dDQUMxQixJQUFJLEVBQUUsWUFBWTt3Q0FDbEIsS0FBSyxFQUFFLDJCQUEyQjtxQ0FDckMsQ0FBQztvQ0FDRixZQUFZLENBQUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDO2dDQUNwRSxDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixZQUFZLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3hFLE1BQU0sYUFBYSxHQUFHO29DQUNsQixHQUFHLEVBQUUscUJBQXFCO29DQUMxQixJQUFJLEVBQUUsWUFBWTtvQ0FDbEIsS0FBSyxFQUFFLEtBQUssQ0FBQyxPQUFPO2lDQUN2QixDQUFDO2dDQUNGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7NEJBQ3BFLENBQUM7d0JBQ0wsQ0FBQzs2QkFBTSxDQUFDOzRCQUNKLE1BQU0sQ0FBQyxLQUFLLENBQUMsbURBQW1ELENBQUMsQ0FBQzt3QkFDdEUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxrQkFBa0IsRUFBRSxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLHlDQUF5QyxDQUFDLENBQUM7d0JBRXZELHlEQUF5RDt3QkFDekQsTUFBTSxTQUFTLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQzt3QkFDakMsTUFBTSxRQUFRLEdBQUcsT0FBTyxDQUFDLEtBQUssSUFBSSxFQUFFLENBQUM7d0JBQ3JDLE1BQU0sTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLENBQUM7d0JBRTNCLDJFQUEyRTt3QkFDM0UsSUFBSSxDQUFDOzRCQUVELE1BQU0sWUFBWSxHQUFHLHNCQUFzQixDQUFDLE1BQU0sRUFBRSxRQUFRLENBQUMsQ0FBQzs0QkFDOUQsTUFBTSxDQUFDLElBQUksQ0FBQyx1REFBdUQsWUFBWSxFQUFFLENBQUMsQ0FBQzs0QkFFbkYsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsU0FBUyxHQUFHLENBQUMsQ0FBQzs0QkFFNUQsSUFBSSxXQUFXLEdBQWtCLElBQUksQ0FBQzs0QkFFdEMsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO2dDQUN0QixnQkFBZ0I7Z0NBQ2hCLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFFBQVEsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixTQUFTLEdBQUcsQ0FBQyxDQUFDO2dDQUNyRixNQUFNLGFBQWEsR0FBRyxrQkFBa0IsRUFBRSxDQUFDLEtBQUssQ0FBQztvQ0FDN0MsR0FBRyxJQUFJO29DQUNQLE1BQU0sRUFBRSxTQUFTO29DQUNqQixPQUFPLEVBQUUsUUFBUTtvQ0FDakIsR0FBRyxFQUFFLFlBQVksQ0FBQyxtQkFBbUI7aUNBQ3hDLENBQUMsQ0FBQztnQ0FDSCxXQUFXLEdBQUcsTUFBTSxTQUFTLENBQUMsU0FBUyxFQUFFLFFBQVEsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDdEUsQ0FBQztpQ0FBTSxDQUFDO2dDQUNKLGlCQUFpQjtnQ0FDakIsTUFBTSxDQUFDLElBQUksQ0FBQyxnQ0FBZ0MsU0FBUyxHQUFHLENBQUMsQ0FBQztnQ0FDMUQsTUFBTSxZQUFZLEdBQUcsRUFBRSxHQUFHLElBQUksRUFBRSxDQUFDO2dDQUNqQyxPQUFPLFlBQVksQ0FBQyxPQUFPLENBQUM7Z0NBQzVCLE1BQU0sYUFBYSxHQUFHLGtCQUFrQixFQUFFLENBQUMsS0FBSyxDQUFDO29DQUM3QyxHQUFHLFlBQVk7b0NBQ2YsTUFBTSxFQUFFLFNBQVM7b0NBQ2pCLEdBQUcsRUFBRSxZQUFZLENBQUMsbUJBQW1CO2lDQUN4QyxDQUFDLENBQUM7Z0NBQ0gsV0FBVyxHQUFHLE1BQU0sV0FBVyxDQUFDLFNBQVMsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDOUQsQ0FBQzs0QkFFRCxJQUFJLFdBQVcsRUFBRSxDQUFDO2dDQUNkLEtBQUssQ0FBQyxZQUFZLEVBQUUsV0FBVyxDQUFDLENBQUM7Z0NBQ2pDLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFlBQVksRUFBRSxDQUFDLENBQUM7Z0NBRWpELHVEQUF1RDtnQ0FDdkQsTUFBTSxZQUFZLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztnQ0FFcEQsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSwyQkFBMkI7b0NBQ2hDLE1BQU0sRUFBRSxZQUFZO29DQUNwQixRQUFRLEVBQUUsV0FBVztvQ0FDckIsUUFBUSxFQUFFLFlBQVk7aUNBQ3pCLENBQUM7Z0NBRUYsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDaEUsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsSUFBSSxDQUFDLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDLENBQUM7NEJBQ2pGLENBQUM7aUNBQU0sQ0FBQztnQ0FDSixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixDQUFDLENBQUM7Z0NBRTNDLHlCQUF5QjtnQ0FDekIsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSxrQkFBa0I7b0NBQ3ZCLEtBQUssRUFBRSwwQkFBMEI7aUNBQ3BDLENBQUM7Z0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzs0QkFDcEUsQ0FBQzt3QkFDTCxDQUFDO3dCQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7NEJBQ2IsTUFBTSxZQUFZLEdBQUcsS0FBSyxZQUFZLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDOzRCQUM1RSxNQUFNLFVBQVUsR0FBRyxLQUFLLFlBQVksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxTQUFTLENBQUM7NEJBRXBFLE9BQU8sQ0FBQyxHQUFHLENBQUMsc0JBQXNCLEVBQUUsS0FBSyxFQUFDLFlBQVksQ0FBQyxDQUFDOzRCQUV4RCxNQUFNLENBQUMsS0FBSyxDQUFDLHFCQUFxQixFQUFFO2dDQUNoQyxPQUFPLEVBQUUsWUFBWTtnQ0FDckIsS0FBSyxFQUFFLFVBQVU7Z0NBQ2pCLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO2dDQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO2dDQUNoQyxLQUFLLEVBQUUsUUFBUSxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUM7NkJBQzlDLENBQUMsQ0FBQzs0QkFFSCxrQ0FBa0M7NEJBQ2xDLE1BQU0sYUFBYSxHQUFHO2dDQUNsQixHQUFHLEVBQUUsa0JBQWtCO2dDQUN2QixLQUFLLEVBQUUsWUFBWTtnQ0FDbkIsT0FBTyxFQUFFO29DQUNMLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO29DQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO29DQUNoQyxTQUFTLEVBQUUsSUFBSSxJQUFJLEVBQUUsQ0FBQyxXQUFXLEVBQUU7aUNBQ3RDOzZCQUNKLENBQUM7NEJBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzt3QkFDcEUsQ0FBQztvQkFDTCxDQUFDO2dCQUNMLENBQUM7Z0JBQUMsT0FBTyxDQUFDLEVBQUUsQ0FBQztvQkFDVCw0Q0FBNEM7b0JBQzVDLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDO29CQUN2RCxNQUFNLElBQUksSUFBSSxHQUFHLElBQUksQ0FBQztnQkFDMUIsQ0FBQztZQUNMLENBQUM7UUFDTCxDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFO1lBQ3BDLE1BQU0sS0FBSyxHQUFHLElBQUksQ0FBQyxRQUFRLEVBQUUsQ0FBQztZQUM5QixNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBRTVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNwQyxJQUFJLFVBQVUsQ0FBQyxLQUFLLElBQUksVUFBVSxDQUFDLE9BQU8sRUFBRSxDQUFDO3dCQUN6QyxxQ0FBcUM7d0JBRXJDLGdDQUFnQzt3QkFDaEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLG1DQUFtQzs0QkFDMUQsVUFBVSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN0RSxPQUFPLENBQUMsd0JBQXdCO3dCQUNwQyxDQUFDO3dCQUVELHdDQUF3Qzt3QkFDeEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLHdCQUF3QixJQUFJLFVBQVUsQ0FBQyxJQUFJLEVBQUUsT0FBTyxFQUFFLENBQUM7NEJBQzlFLElBQUksQ0FBQztnQ0FDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLFVBQVUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3BELElBQUksT0FBTyxDQUFDLEdBQUcsRUFBRSxDQUFDO29DQUNkLE1BQU0sQ0FBQyxJQUFJLENBQUMsZ0JBQWdCLE9BQU8sQ0FBQyxHQUFHLEVBQUUsRUFBRTt3Q0FDdkMsTUFBTSxFQUFFLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLElBQUksT0FBTyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sQ0FBQyxNQUFNLENBQUMsTUFBTSxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDckgsR0FBRyxFQUFFLE9BQU8sQ0FBQyxHQUFHO3dDQUNoQixLQUFLLEVBQUUsT0FBTyxDQUFDLEtBQUssRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsT0FBTyxDQUFDLEtBQUssQ0FBQyxNQUFNLFFBQVEsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDMUUsU0FBUyxFQUFFLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTTtxQ0FDOUIsQ0FBQyxDQUFDO29DQUNILE9BQU87Z0NBQ1gsQ0FBQzs0QkFDTCxDQUFDOzRCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7Z0NBQ1Qsa0NBQWtDOzRCQUN0QyxDQUFDO3dCQUNMLENBQUM7d0JBRUQsUUFBUSxVQUFVLENBQUMsS0FBSyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7NEJBQ3JDLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVixLQUFLLE1BQU07Z0NBQ1AsTUFBTSxDQUFDLElBQUksQ0FBQyxNQUFNLFVBQVUsQ0FBQyxPQUFPLEVBQUUsRUFBRSxVQUFVLENBQUMsSUFBSSxDQUFDLENBQUM7Z0NBQ3pELE1BQU07NEJBQ1YsS0FBSyxNQUFNO2dDQUNQLE1BQU0sQ0FBQyxJQUFJLENBQUMsTUFBTSxVQUFVLENBQUMsT0FBTyxFQUFFLEVBQUUsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO2dDQUN6RCxNQUFNOzRCQUNWLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVjtnQ0FDSSxNQUFNLENBQUMsSUFBSSxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDakUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLENBQUM7d0JBQ0oseURBQXlEO3dCQUN6RCxNQUFNLENBQUMsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDNUIsQ0FBQztnQkFDTCxDQUFDO2dCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7b0JBQ1Qsa0VBQWtFO29CQUNsRSxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQzt3QkFDOUIsbUNBQW1DO3dCQUNuQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsa0NBQWtDLENBQUM7NEJBQ2pELElBQUksQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN4RCxPQUFPLENBQUMsYUFBYTt3QkFDekIsQ0FBQzt3QkFDRCx3REFBd0Q7d0JBQ3hELElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsc0JBQXNCLENBQUMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxFQUFFLENBQUM7NEJBQ3pHLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsbUJBQW1CLEVBQUUsRUFBRSxDQUFDLENBQUMsT0FBTyxDQUFDLFVBQVUsRUFBRSxFQUFFLENBQUMsQ0FBQzs0QkFDbEYsTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsV0FBVyxDQUFDLENBQUM7d0JBQ25DLENBQUM7b0JBQ0wsQ0FBQzt5QkFBTSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDO3dCQUNyQixnQ0FBZ0M7d0JBQ2hDLE1BQU0sQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUM1QixDQUFDO2dCQUNMLENBQUM7WUFDTCxDQUFDO1lBQ0QsV0FBVyxJQUFJLEtBQUssQ0FBQztRQUN6QixDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxFQUFFLENBQUMsT0FBTyxFQUFFLENBQUMsSUFBSSxFQUFFLEVBQUU7WUFDOUIsTUFBTSxDQUFDLElBQUksQ0FBQywrQkFBK0IsRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNuRCxNQUFNLENBQUMsSUFBSSxDQUFDLGVBQWUsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUM7WUFDckQsTUFBTSxDQUFDLElBQUksQ0FBQyxlQUFlLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDO1lBRTFELElBQUksSUFBSSxLQUFLLENBQUMsRUFBRSxDQUFDO2dCQUNiLE1BQU0sYUFBYSxHQUFHLE1BQU0sQ0FBQyxJQUFJLEVBQUUsQ0FBQztnQkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQywyQkFBMkIsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxDQUFDLENBQUM7Z0JBQ3hFLFFBQVEsQ0FBQyxhQUFhLElBQUksSUFBSSxDQUFDLENBQUM7WUFDcEMsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLEtBQUssQ0FBQyw4QkFBOEIsSUFBSSxhQUFhLFdBQVcsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUNwRixDQUFDO1FBQ0wsQ0FBQyxDQUFDLENBQUM7UUFFSCxZQUFZLENBQUMsRUFBRSxDQUFDLE9BQU8sRUFBRSxDQUFDLEdBQUcsRUFBRSxFQUFFO1lBQzdCLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNoQixDQUFDLENBQUMsQ0FBQztJQUNQLENBQUMsQ0FBQyxDQUFDO0FBQ1AsQ0FBQztBQUdELE1BQU0sQ0FBQyxNQUFNLFlBQVksR0FBRyxLQUFLLEVBQUUsSUFBUyxFQUFFLEVBQUU7SUFDNUMsTUFBTSxNQUFNLEdBQUcsSUFBSSxNQUFNLENBQVUsRUFBRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVEsSUFBSSxDQUFDLEVBQUUsQ0FBQyxDQUFDO0lBRXJFLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO1FBQ1gsSUFBSSxDQUFDO1lBQ0QsTUFBTSxTQUFTLEdBQUcsTUFBTSxxQkFBcUIsQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUNwRCxJQUFJLFNBQVMsRUFBRSxDQUFDO2dCQUNaLE1BQU0sT0FBTyxHQUFHLElBQUksQ0FBQyxLQUFLLENBQUMsU0FBUyxDQUFDLENBQUM7Z0JBQ3RDLElBQUksQ0FBQyxNQUFNLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQztnQkFDN0IsSUFBSSxPQUFPLENBQUMsS0FBSyxJQUFJLE9BQU8sQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO29CQUM1QyxJQUFJLENBQUMsT0FBTyxHQUFHLE9BQU8sQ0FBQyxLQUFLLENBQUM7Z0JBQ2pDLENBQUM7Z0JBQ0QsSUFBSSxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUM7b0JBQ2QsSUFBSSxDQUFDLEdBQUcsR0FBRyxPQUFPLENBQUMsR0FBRyxDQUFDO2dCQUMzQixDQUFDO1lBQ0wsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsd0NBQXdDLENBQUMsQ0FBQztnQkFDdEQsT0FBTztZQUNYLENBQUM7UUFDTCxDQUFDO1FBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztZQUNiLE1BQU0sQ0FBQyxLQUFLLENBQUMsb0JBQW9CLEVBQUUsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDO1lBQ2xELE9BQU87UUFDWCxDQUFDO0lBQ0wsQ0FBQztJQUVELElBQUksSUFBSSxDQUFDLE9BQU8sSUFBSSxRQUFRLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7UUFDekMsSUFBSSxDQUFDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNsQyxDQUFDO0lBRUQsSUFBSSxDQUFDO1FBQ0QsTUFBTSxhQUFhLEdBQUcsa0JBQWtCLEVBQUUsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDdkQsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsR0FBRyxJQUFJLEVBQUUsR0FBRyxhQUFhLENBQUM7UUFFaEQsTUFBTSxhQUFhLEdBQUcsTUFBTSxhQUFhLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDekQsTUFBTSxNQUFNLEdBQUcsYUFBYSxFQUFFLE9BQWlCLElBQUksRUFBRSxDQUFDO1FBRXRELElBQUksQ0FBQyxNQUFNLElBQUksQ0FBQyxPQUFPLEVBQUUsQ0FBQztZQUN0QixNQUFNLENBQUMsS0FBSyxDQUFDLHlGQUF5RixDQUFDLENBQUM7WUFDeEcsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDUCxNQUFNLENBQUMsS0FBSyxDQUFDLG9EQUFvRCxDQUFDLENBQUM7WUFDbkUsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLFdBQVcsR0FBa0IsSUFBSSxDQUFDO1FBRXRDLElBQUksT0FBTyxJQUFJLE9BQU8sQ0FBQyxPQUFPLENBQUMsSUFBSSxPQUFPLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1lBQ3BELGdCQUFnQjtZQUNoQixLQUFLLE1BQU0sU0FBUyxJQUFJLE9BQU8sRUFBRSxDQUFDO2dCQUM5QixJQUFJLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0JBQ3JCLE1BQU0sQ0FBQyxLQUFLLENBQUMsNkJBQTZCLFNBQVMsRUFBRSxDQUFDLENBQUM7b0JBQ3ZELE9BQU87Z0JBQ1gsQ0FBQztZQUNMLENBQUM7WUFDRCxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7Z0JBQ1YsTUFBTSxDQUFDLEtBQUssQ0FBQyx5Q0FBeUMsQ0FBQyxDQUFDO2dCQUN4RCxPQUFPO1lBQ1gsQ0FBQztZQUNELE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLE9BQU8sQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ2pGLFdBQVcsR0FBRyxNQUFNLFNBQVMsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLGFBQWEsQ0FBQyxDQUFDO1FBQ2xFLENBQUM7YUFBTSxJQUFJLE1BQU0sRUFBRSxDQUFDO1lBQ2hCLGlCQUFpQjtZQUNqQixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ3ZELFdBQVcsR0FBRyxNQUFNLFdBQVcsQ0FBQyxNQUFNLEVBQUUsYUFBYSxDQUFDLENBQUM7UUFDM0QsQ0FBQztRQUVELElBQUksV0FBVyxFQUFFLENBQUM7WUFDZCxNQUFNLElBQUksR0FBRyxTQUFTLENBQUMsYUFBYSxDQUFDLENBQUM7WUFDdEMsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsR0FBRyxFQUFFLGFBQWEsQ0FBQyxHQUFHLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUNwRSxLQUFLLENBQUMsT0FBTyxFQUFFLFdBQVcsQ0FBQyxDQUFDO1lBQzVCLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDOUMsQ0FBQzthQUFNLENBQUM7WUFDSixNQUFNLENBQUMsS0FBSyxDQUFDLDJCQUEyQixDQUFDLENBQUM7UUFDOUMsQ0FBQztJQUVMLENBQUM7SUFBQyxPQUFPLEtBQUssRUFBRSxDQUFDO1FBQ2IsTUFBTSxDQUFDLEtBQUssQ0FBQyw0Q0FBNEMsRUFBRSxLQUFLLENBQUMsT0FBTyxFQUFFLEtBQUssQ0FBQyxNQUFNLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO0lBQ3pHLENBQUM7QUFDTCxDQUFDLENBQUMifQ==
+//# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW1hZ2VzLmpzIiwic291cmNlUm9vdCI6IiIsInNvdXJjZXMiOlsiLi4vLi4vc3JjL2NvbW1hbmRzL2ltYWdlcy50cyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQSxPQUFPLEVBQUUsQ0FBQyxFQUFFLE1BQU0sS0FBSyxDQUFDO0FBQ3hCLE9BQU8sS0FBSyxJQUFJLE1BQU0sV0FBVyxDQUFDO0FBQ2xDLE9BQU8sRUFBRSxJQUFJLElBQUksS0FBSyxFQUFFLE1BQU0sb0JBQW9CLENBQUM7QUFDbkQsT0FBTyxFQUFFLElBQUksSUFBSSxNQUFNLEVBQUUsTUFBTSxxQkFBcUIsQ0FBQztBQUNyRCxPQUFPLEVBQ0gsWUFBWSxFQUNaLFFBQVEsRUFDUixVQUFVLEVBQ2IsTUFBTSxTQUFTLENBQUM7QUFDakIsT0FBTyxFQUFXLE1BQU0sRUFBRSxNQUFNLE9BQU8sQ0FBQztBQUN4QyxPQUFPLEVBQUUsU0FBUyxFQUFFLE1BQU0saUJBQWlCLENBQUM7QUFDNUMsT0FBTyxFQUFFLE9BQU8sRUFBRSxNQUFNLG1CQUFtQixDQUFDO0FBRTVDLE9BQU8sRUFBRSxPQUFPLEVBQUUsUUFBUSxFQUFFLE1BQU0sMkJBQTJCLENBQUM7QUFFOUQsT0FBTyxFQUFFLGFBQWEsRUFBRSxNQUFNLGtCQUFrQixDQUFDO0FBQ2pELE9BQU8sRUFBRSxXQUFXLEVBQUUsU0FBUyxFQUFFLE1BQU0seUJBQXlCLENBQUM7QUFDakUsT0FBTyxFQUFFLE1BQU0sSUFBSSxhQUFhLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFDdkQsT0FBTyxFQUFFLEtBQUssRUFBRSxNQUFNLG9CQUFvQixDQUFDO0FBQzNDLE9BQU8sRUFBRSxVQUFVLEVBQUUsTUFBTSxjQUFjLENBQUM7QUFFMUMsU0FBUyxzQkFBc0IsQ0FBQyxHQUF1QixFQUFFLFFBQWtCO0lBQ3ZFLElBQUksTUFBYyxDQUFDO0lBRW5CLElBQUksR0FBRyxFQUFFLENBQUM7UUFDTixNQUFNLFdBQVcsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLEdBQUcsQ0FBQyxDQUFDO1FBQ3RDLE1BQU0sT0FBTyxHQUFHLE1BQU0sQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUM7UUFDbkUsSUFBSSxPQUFPLElBQUksT0FBTyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7WUFDbkMsTUFBTSxHQUFHLFdBQVcsQ0FBQztRQUN6QixDQUFDO2FBQU0sQ0FBQztZQUNKLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFdBQVcsQ0FBQyxDQUFDO1FBQ3ZDLENBQUM7SUFDTCxDQUFDO1NBQU0sSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQzdCLE1BQU0sR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO0lBQ3ZDLENBQUM7U0FBTSxDQUFDO1FBQ0osTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLEVBQUUsQ0FBQyxDQUFDLGtDQUFrQztJQUM5RCxDQUFDO0lBRUQsSUFBSSxZQUFZLENBQUM7SUFDakIsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0lBRVYsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1FBQ3RCLE1BQU0sZ0JBQWdCLEdBQUcsSUFBSSxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLEVBQUUsSUFBSSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1FBQy9FLE1BQU0sS0FBSyxHQUFHLGdCQUFnQixDQUFDLEtBQUssQ0FBQyxhQUFhLENBQUMsQ0FBQztRQUNwRCxJQUFJLEtBQUssSUFBSSxLQUFLLENBQUMsS0FBSyxFQUFFLENBQUM7WUFDdkIsWUFBWSxHQUFHLGdCQUFnQixDQUFDLFNBQVMsQ0FBQyxDQUFDLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO1lBQzFELENBQUMsR0FBRyxRQUFRLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNuQyxDQUFDO2FBQU0sQ0FBQztZQUNKLFlBQVksR0FBRyxnQkFBZ0IsQ0FBQztRQUNwQyxDQUFDO0lBQ0wsQ0FBQztTQUFNLENBQUM7UUFDSixZQUFZLEdBQUcsV0FBVyxDQUFDO0lBQy9CLENBQUM7SUFFRCxJQUFJLFdBQVcsQ0FBQztJQUNoQixJQUFJLFlBQVksQ0FBQztJQUNqQixHQUFHLENBQUM7UUFDQSxXQUFXLEdBQUcsR0FBRyxZQUFZLFFBQVEsQ0FBQyxNQUFNLENBQUM7UUFDN0MsWUFBWSxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsTUFBTSxFQUFFLFdBQVcsQ0FBQyxDQUFDO1FBQ2pELENBQUMsRUFBRSxDQUFDO0lBQ1IsQ0FBQyxRQUFRLE1BQU0sQ0FBQyxZQUFZLENBQUMsRUFBRTtJQUUvQixPQUFPLFlBQVksQ0FBQztBQUN4QixDQUFDO0FBRUQsU0FBUyxhQUFhO0lBRWxCLHNFQUFzRTtJQUN0RSxNQUFNLFNBQVMsR0FBRyxJQUFJLENBQUMsT0FBTyxDQUFDLElBQUksR0FBRyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsUUFBUSxDQUFDLENBQUM7SUFDbEUsb0ZBQW9GO0lBQ3BGLE1BQU0sY0FBYyxHQUFHLE9BQU8sQ0FBQyxRQUFRLEtBQUssT0FBTyxJQUFJLFNBQVMsQ0FBQyxVQUFVLENBQUMsR0FBRyxDQUFDO1FBQzVFLENBQUMsQ0FBQyxTQUFTLENBQUMsU0FBUyxDQUFDLENBQUMsQ0FBQztRQUN4QixDQUFDLENBQUMsU0FBUyxDQUFDO0lBRVosTUFBTSxXQUFXLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxjQUFjLEVBQUUsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO0lBRWpFLCtEQUErRDtJQUMvRCxJQUFJLFdBQW1CLENBQUM7SUFDeEIsSUFBSSxjQUFzQixDQUFDO0lBRTNCLFFBQVEsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDO1FBQ3ZCLEtBQUssT0FBTztZQUNSLFdBQVcsR0FBRyxRQUFRLENBQUM7WUFDdkIsY0FBYyxHQUFHLGVBQWUsQ0FBQztZQUNqQyxNQUFNO1FBQ1YsS0FBSyxRQUFRO1lBQ1QsV0FBVyxHQUFHLFFBQVEsQ0FBQztZQUN2QixjQUFjLEdBQUcsV0FBVyxDQUFDO1lBQzdCLE1BQU07UUFDVixLQUFLLE9BQU87WUFDUixXQUFXLEdBQUcsVUFBVSxDQUFDO1lBQ3pCLGNBQWMsR0FBRyxXQUFXLENBQUM7WUFDN0IsTUFBTTtRQUNWO1lBQ0ksTUFBTSxJQUFJLEtBQUssQ0FBQyx5QkFBeUIsT0FBTyxDQUFDLFFBQVEsRUFBRSxDQUFDLENBQUM7SUFDckUsQ0FBQztJQUVELE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxXQUFXLEVBQUUsTUFBTSxFQUFFLFdBQVcsRUFBRSxjQUFjLENBQUMsQ0FBQztBQUN2RSxDQUFDO0FBRUQsTUFBTSxDQUFDLE1BQU0sa0JBQWtCLEdBQUcsR0FBRyxFQUFFO0lBQ25DLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDLElBQUksQ0FBQztRQUNwQyxNQUFNLEVBQUUsSUFBSTtRQUNaLE9BQU8sRUFBRSxJQUFJO1FBQ2IsR0FBRyxFQUFFLElBQUk7UUFDVCxLQUFLLEVBQUUsSUFBSTtRQUNYLFFBQVEsRUFBRSxJQUFJO1FBQ2QsTUFBTSxFQUFFLElBQUk7UUFDWixPQUFPLEVBQUUsSUFBSTtRQUNiLEdBQUcsRUFBRSxJQUFJO0tBQ1osQ0FBQyxDQUFDO0lBRUgsT0FBTyxVQUFVLENBQUMsTUFBTSxDQUFDO1FBQ3JCLEdBQUcsRUFBRSxDQUFDLENBQUMsT0FBTyxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDBCQUEwQixDQUFDO1FBQ2hFLEtBQUssRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsT0FBTyxDQUFDLGdDQUFnQyxDQUFDLENBQUMsUUFBUSxDQUFDLCtDQUErQyxDQUFDO1FBQ3JILEdBQUcsRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxDQUFDLGtEQUFrRCxDQUFDO1FBQzVFLE1BQU0sRUFBRSxDQUFDLENBQUMsTUFBTSxFQUFFLENBQUMsUUFBUSxFQUFFLENBQUMsUUFBUSxDQUFDLDJDQUEyQyxDQUFDO0tBQ3RGLENBQUMsQ0FBQztBQUNQLENBQUMsQ0FBQTtBQUVELEtBQUssVUFBVSxxQkFBcUIsQ0FBQyxJQUFTO0lBQzFDLE1BQU0sTUFBTSxHQUFHLElBQUksTUFBTSxDQUFVO1FBQy9CLFFBQVEsRUFBRSxDQUFDLEVBQUUsOEJBQThCO1FBQzNDLGlCQUFpQixFQUFFLHdFQUF3RTtLQUM5RixDQUFDLENBQUM7SUFFSCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsUUFBUSxFQUFFLE1BQU0sRUFBRSxFQUFFO1FBQ3BDLE1BQU0sVUFBVSxHQUFHLGFBQWEsRUFBRSxDQUFDO1FBQ25DLE1BQU0sQ0FBQyxJQUFJLENBQUMsa0JBQWtCLEVBQUUsVUFBVSxDQUFDLENBQUM7UUFDNUMsSUFBSSxDQUFDLE1BQU0sQ0FBQyxVQUFVLENBQUMsRUFBRSxDQUFDO1lBQ3RCLE9BQU8sTUFBTSxDQUFDLElBQUksS0FBSyxDQUFDLGlDQUFpQyxVQUFVLDhFQUE4RSxDQUFDLENBQUMsQ0FBQztRQUN4SixDQUFDO1FBRUQsd0JBQXdCO1FBQ3hCLE1BQU0sSUFBSSxHQUFhLEVBQUUsQ0FBQztRQUUxQixvQkFBb0I7UUFDcEIsSUFBSSxJQUFJLENBQUMsT0FBTyxFQUFFLENBQUM7WUFDZixNQUFNLFFBQVEsR0FBRyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7WUFDN0UsTUFBTSxnQkFBZ0IsR0FBRyxRQUFRLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxDQUFDO1lBQzVELElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxnQkFBZ0IsQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxjQUFjO1FBQ2QsTUFBTSxNQUFNLEdBQUcsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO1FBQ2hDLE1BQU0sTUFBTSxHQUFHLElBQUksQ0FBQyxPQUFPLElBQUksTUFBTSxFQUFFLE1BQU0sRUFBRSxHQUFHLENBQUM7UUFDbkQsSUFBSSxNQUFNLEVBQUUsQ0FBQztZQUNULElBQUksQ0FBQyxJQUFJLENBQUMsV0FBVyxFQUFFLE1BQU0sQ0FBQyxDQUFDO1FBQ25DLENBQUM7UUFFRCxVQUFVO1FBQ1YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDWCxJQUFJLENBQUMsSUFBSSxDQUFDLE9BQU8sRUFBRSxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUM7UUFDakMsQ0FBQztRQUVELGFBQWE7UUFDYixJQUFJLElBQUksQ0FBQyxNQUFNLEVBQUUsQ0FBQztZQUNkLElBQUksQ0FBQyxJQUFJLENBQUMsVUFBVSxFQUFFLElBQUksQ0FBQyxNQUFNLENBQUMsQ0FBQztRQUN2QyxDQUFDO1FBRUQsTUFBTSxZQUFZLEdBQUcsS0FBSyxDQUFDLFVBQVUsRUFBRSxJQUFJLEVBQUUsRUFBRSxLQUFLLEVBQUUsQ0FBQyxNQUFNLEVBQUUsTUFBTSxFQUFFLE1BQU0sQ0FBQyxFQUFFLENBQUMsQ0FBQztRQUVsRixJQUFJLE1BQU0sR0FBRyxFQUFFLENBQUM7UUFDaEIsSUFBSSxXQUFXLEdBQUcsRUFBRSxDQUFDO1FBRXJCLFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxLQUFLLEVBQUUsSUFBSSxFQUFFLEVBQUU7WUFDMUMsTUFBTSxLQUFLLEdBQUcsSUFBSSxDQUFDLFFBQVEsRUFBRSxDQUFDO1lBRTlCLHlDQUF5QztZQUN6QyxNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBQzVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNqQyxJQUFJLE9BQU8sQ0FBQyxJQUFJLEtBQUssZ0JBQWdCLEVBQUUsQ0FBQzt3QkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQyxxQ0FBcUMsQ0FBQyxDQUFDO3dCQUVuRCwyQ0FBMkM7d0JBQzNDLE1BQU0sTUFBTSxHQUFHLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDaEMsTUFBTSxNQUFNLEdBQUcsSUFBSSxDQUFDLE9BQU8sSUFBSSxNQUFNLEVBQUUsTUFBTSxFQUFFLEdBQUcsQ0FBQzt3QkFDbkQsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDO3dCQUNuRyxNQUFNLGdCQUFnQixHQUFHLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUMsQ0FBQyxDQUFDLENBQUM7d0JBRTVELE1BQU0sY0FBYyxHQUFHOzRCQUNuQixHQUFHLEVBQUUsNEJBQTRCOzRCQUNqQyxNQUFNLEVBQUUsSUFBSSxDQUFDLE1BQU0sSUFBSSxJQUFJOzRCQUMzQixHQUFHLEVBQUUsSUFBSSxDQUFDLEdBQUcsSUFBSSxJQUFJOzRCQUNyQixNQUFNLEVBQUUsTUFBTSxJQUFJLElBQUk7NEJBQ3RCLEtBQUssRUFBRSxnQkFBZ0I7eUJBQzFCLENBQUM7d0JBRUYsTUFBTSxVQUFVLEdBQUcsSUFBSSxDQUFDLFNBQVMsQ0FBQyxjQUFjLENBQUMsQ0FBQzt3QkFDbEQsTUFBTSxDQUFDLElBQUksQ0FBQyw2QkFBNkIsRUFBRSxVQUFVLENBQUMsQ0FBQzt3QkFDdkQsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsVUFBVSxHQUFHLElBQUksQ0FBQyxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxFQUFFLGNBQWMsQ0FBQyxDQUFDO3dCQUU5RCxrQkFBa0I7d0JBQ2xCLEtBQUssTUFBTSxTQUFTLElBQUksZ0JBQWdCLEVBQUUsQ0FBQzs0QkFDdkMsSUFBSSxDQUFDO2dDQUNELElBQUksTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0NBQ3BCLE1BQU0sV0FBVyxHQUFHLFlBQVksQ0FBQyxTQUFTLENBQUMsQ0FBQztvQ0FDNUMsTUFBTSxNQUFNLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztvQ0FDOUMsTUFBTSxRQUFRLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxTQUFTLENBQUMsQ0FBQyxXQUFXLEVBQUUsS0FBSyxNQUFNLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQyxDQUFDLENBQUMsWUFBWSxDQUFDO29DQUMvRixNQUFNLFFBQVEsR0FBRyxJQUFJLENBQUMsUUFBUSxDQUFDLFNBQVMsQ0FBQyxDQUFDO29DQUUxQyxNQUFNLGFBQWEsR0FBRzt3Q0FDbEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsTUFBTTt3Q0FDTixRQUFRO3dDQUNSLFFBQVEsRUFBRSxTQUFTO3FDQUN0QixDQUFDO29DQUVGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7b0NBQ2hFLE1BQU0sQ0FBQyxJQUFJLENBQUMsdUJBQXVCLFFBQVEsS0FBSyxJQUFJLENBQUMsS0FBSyxDQUFDLE1BQU0sQ0FBQyxNQUFNLEdBQUMsSUFBSSxDQUFDLEtBQUssQ0FBQyxDQUFDO2dDQUN6RixDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLHlCQUF5QixTQUFTLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7NEJBQ3RFLENBQUM7d0JBQ0wsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxnQkFBZ0IsRUFBRSxDQUFDO3dCQUMzQyxNQUFNLENBQUMsSUFBSSxDQUFDLHFDQUFxQyxDQUFDLENBQUM7d0JBQ25ELE1BQU0sWUFBWSxHQUFHLE9BQU8sQ0FBQyxJQUFJLENBQUM7d0JBQ2xDLElBQUksWUFBWSxJQUFJLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDOzRCQUN6QyxJQUFJLENBQUM7Z0NBQ0QsSUFBSSxNQUFNLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQztvQ0FDdkIsVUFBVSxDQUFDLFlBQVksQ0FBQyxDQUFDO29DQUN6QixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxZQUFZLEVBQUUsQ0FBQyxDQUFDO29DQUM1RCxNQUFNLGVBQWUsR0FBRzt3Q0FDcEIsR0FBRyxFQUFFLDJCQUEyQjt3Q0FDaEMsSUFBSSxFQUFFLFlBQVk7cUNBQ3JCLENBQUM7b0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxlQUFlLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDdEUsQ0FBQztxQ0FBTSxDQUFDO29DQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUNBQW1DLFlBQVksRUFBRSxDQUFDLENBQUM7b0NBQy9ELE1BQU0sYUFBYSxHQUFHO3dDQUNsQixHQUFHLEVBQUUscUJBQXFCO3dDQUMxQixJQUFJLEVBQUUsWUFBWTt3Q0FDbEIsS0FBSyxFQUFFLDJCQUEyQjtxQ0FDckMsQ0FBQztvQ0FDRixZQUFZLENBQUMsS0FBSyxFQUFFLEtBQUssQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxHQUFHLElBQUksQ0FBQyxDQUFDO2dDQUNwRSxDQUFDOzRCQUNMLENBQUM7NEJBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztnQ0FDYixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixZQUFZLEVBQUUsRUFBRSxLQUFLLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3hFLE1BQU0sYUFBYSxHQUFHO29DQUNsQixHQUFHLEVBQUUscUJBQXFCO29DQUMxQixJQUFJLEVBQUUsWUFBWTtvQ0FDbEIsS0FBSyxFQUFFLEtBQUssQ0FBQyxPQUFPO2lDQUN2QixDQUFDO2dDQUNGLFlBQVksQ0FBQyxLQUFLLEVBQUUsS0FBSyxDQUFDLElBQUksQ0FBQyxTQUFTLENBQUMsYUFBYSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUM7NEJBQ3BFLENBQUM7d0JBQ0wsQ0FBQzs2QkFBTSxDQUFDOzRCQUNKLE1BQU0sQ0FBQyxLQUFLLENBQUMsbURBQW1ELENBQUMsQ0FBQzt3QkFDdEUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLElBQUksT0FBTyxDQUFDLElBQUksS0FBSyxrQkFBa0IsRUFBRSxDQUFDO3dCQUM3QyxNQUFNLENBQUMsSUFBSSxDQUFDLHlDQUF5QyxDQUFDLENBQUM7d0JBRXZELHlEQUF5RDt3QkFDekQsTUFBTSxTQUFTLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQzt3QkFDakMsTUFBTSxRQUFRLEdBQUcsT0FBTyxDQUFDLEtBQUssSUFBSSxFQUFFLENBQUM7d0JBQ3JDLE1BQU0sTUFBTSxHQUFHLE9BQU8sQ0FBQyxHQUFHLENBQUM7d0JBRTNCLDJFQUEyRTt3QkFDM0UsSUFBSSxDQUFDOzRCQUVELE1BQU0sWUFBWSxHQUFHLHNCQUFzQixDQUFDLE1BQU0sRUFBRSxRQUFRLENBQUMsQ0FBQzs0QkFDOUQsTUFBTSxDQUFDLElBQUksQ0FBQyx1REFBdUQsWUFBWSxFQUFFLENBQUMsQ0FBQzs0QkFFbkYsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsU0FBUyxHQUFHLENBQUMsQ0FBQzs0QkFFNUQsSUFBSSxXQUFXLEdBQWtCLElBQUksQ0FBQzs0QkFFdEMsSUFBSSxRQUFRLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO2dDQUN0QixnQkFBZ0I7Z0NBQ2hCLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFFBQVEsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixTQUFTLEdBQUcsQ0FBQyxDQUFDO2dDQUNyRixNQUFNLGFBQWEsR0FBRyxrQkFBa0IsRUFBRSxDQUFDLEtBQUssQ0FBQztvQ0FDN0MsR0FBRyxJQUFJO29DQUNQLE1BQU0sRUFBRSxTQUFTO29DQUNqQixPQUFPLEVBQUUsUUFBUTtvQ0FDakIsR0FBRyxFQUFFLFlBQVksQ0FBQyxtQkFBbUI7aUNBQ3hDLENBQUMsQ0FBQztnQ0FDSCxXQUFXLEdBQUcsTUFBTSxTQUFTLENBQUMsU0FBUyxFQUFFLFFBQVEsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDdEUsQ0FBQztpQ0FBTSxDQUFDO2dDQUNKLGlCQUFpQjtnQ0FDakIsTUFBTSxDQUFDLElBQUksQ0FBQyxnQ0FBZ0MsU0FBUyxHQUFHLENBQUMsQ0FBQztnQ0FDMUQsTUFBTSxZQUFZLEdBQUcsRUFBRSxHQUFHLElBQUksRUFBRSxDQUFDO2dDQUNqQyxPQUFPLFlBQVksQ0FBQyxPQUFPLENBQUM7Z0NBQzVCLE1BQU0sYUFBYSxHQUFHLGtCQUFrQixFQUFFLENBQUMsS0FBSyxDQUFDO29DQUM3QyxHQUFHLFlBQVk7b0NBQ2YsTUFBTSxFQUFFLFNBQVM7b0NBQ2pCLEdBQUcsRUFBRSxZQUFZLENBQUMsbUJBQW1CO2lDQUN4QyxDQUFDLENBQUM7Z0NBQ0gsV0FBVyxHQUFHLE1BQU0sV0FBVyxDQUFDLFNBQVMsRUFBRSxhQUFhLENBQUMsQ0FBQzs0QkFDOUQsQ0FBQzs0QkFFRCxJQUFJLFdBQVcsRUFBRSxDQUFDO2dDQUNkLEtBQUssQ0FBQyxZQUFZLEVBQUUsV0FBVyxDQUFDLENBQUM7Z0NBQ2pDLE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLFlBQVksRUFBRSxDQUFDLENBQUM7Z0NBRWpELHVEQUF1RDtnQ0FDdkQsTUFBTSxZQUFZLEdBQUcsV0FBVyxDQUFDLFFBQVEsQ0FBQyxRQUFRLENBQUMsQ0FBQztnQ0FFcEQsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSwyQkFBMkI7b0NBQ2hDLE1BQU0sRUFBRSxZQUFZO29DQUNwQixRQUFRLEVBQUUsV0FBVztvQ0FDckIsUUFBUSxFQUFFLFlBQVk7aUNBQ3pCLENBQUM7Z0NBRUYsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQztnQ0FDaEUsTUFBTSxDQUFDLElBQUksQ0FBQyxrQ0FBa0MsSUFBSSxDQUFDLFFBQVEsQ0FBQyxZQUFZLENBQUMsRUFBRSxDQUFDLENBQUM7NEJBQ2pGLENBQUM7aUNBQU0sQ0FBQztnQ0FDSixNQUFNLENBQUMsS0FBSyxDQUFDLDRCQUE0QixDQUFDLENBQUM7Z0NBRTNDLHlCQUF5QjtnQ0FDekIsTUFBTSxhQUFhLEdBQUc7b0NBQ2xCLEdBQUcsRUFBRSxrQkFBa0I7b0NBQ3ZCLEtBQUssRUFBRSwwQkFBMEI7aUNBQ3BDLENBQUM7Z0NBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzs0QkFDcEUsQ0FBQzt3QkFDTCxDQUFDO3dCQUFDLE9BQU8sS0FBSyxFQUFFLENBQUM7NEJBQ2IsTUFBTSxZQUFZLEdBQUcsS0FBSyxZQUFZLEtBQUssQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDLENBQUMsTUFBTSxDQUFDLEtBQUssQ0FBQyxDQUFDOzRCQUM1RSxNQUFNLFVBQVUsR0FBRyxLQUFLLFlBQVksS0FBSyxDQUFDLENBQUMsQ0FBQyxLQUFLLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxTQUFTLENBQUM7NEJBRXBFLE9BQU8sQ0FBQyxHQUFHLENBQUMsc0JBQXNCLEVBQUUsS0FBSyxFQUFDLFlBQVksQ0FBQyxDQUFDOzRCQUV4RCxNQUFNLENBQUMsS0FBSyxDQUFDLHFCQUFxQixFQUFFO2dDQUNoQyxPQUFPLEVBQUUsWUFBWTtnQ0FDckIsS0FBSyxFQUFFLFVBQVU7Z0NBQ2pCLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO2dDQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO2dDQUNoQyxLQUFLLEVBQUUsUUFBUSxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxRQUFRLENBQUMsQ0FBQyxDQUFDLENBQUM7NkJBQzlDLENBQUMsQ0FBQzs0QkFFSCxrQ0FBa0M7NEJBQ2xDLE1BQU0sYUFBYSxHQUFHO2dDQUNsQixHQUFHLEVBQUUsa0JBQWtCO2dDQUN2QixLQUFLLEVBQUUsWUFBWTtnQ0FDbkIsT0FBTyxFQUFFO29DQUNMLE1BQU0sRUFBRSxTQUFTLEVBQUUsU0FBUyxDQUFDLENBQUMsRUFBRSxHQUFHLENBQUMsR0FBRyxLQUFLO29DQUM1QyxTQUFTLEVBQUUsUUFBUSxFQUFFLE1BQU0sSUFBSSxDQUFDO29DQUNoQyxTQUFTLEVBQUUsSUFBSSxJQUFJLEVBQUUsQ0FBQyxXQUFXLEVBQUU7aUNBQ3RDOzZCQUNKLENBQUM7NEJBQ0YsWUFBWSxDQUFDLEtBQUssRUFBRSxLQUFLLENBQUMsSUFBSSxDQUFDLFNBQVMsQ0FBQyxhQUFhLENBQUMsR0FBRyxJQUFJLENBQUMsQ0FBQzt3QkFDcEUsQ0FBQztvQkFDTCxDQUFDO2dCQUNMLENBQUM7Z0JBQUMsT0FBTyxDQUFDLEVBQUUsQ0FBQztvQkFDVCw0Q0FBNEM7b0JBQzVDLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxDQUFDO29CQUN2RCxNQUFNLElBQUksSUFBSSxHQUFHLElBQUksQ0FBQztnQkFDMUIsQ0FBQztZQUNMLENBQUM7UUFDTCxDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxNQUFNLENBQUMsRUFBRSxDQUFDLE1BQU0sRUFBRSxDQUFDLElBQUksRUFBRSxFQUFFO1lBQ3BDLE1BQU0sS0FBSyxHQUFHLElBQUksQ0FBQyxRQUFRLEVBQUUsQ0FBQztZQUM5QixNQUFNLEtBQUssR0FBRyxLQUFLLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDLE1BQU0sQ0FBQyxJQUFJLENBQUMsRUFBRSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsQ0FBQyxDQUFDO1lBRTVELEtBQUssTUFBTSxJQUFJLElBQUksS0FBSyxFQUFFLENBQUM7Z0JBQ3ZCLElBQUksQ0FBQztvQkFDRCxNQUFNLFVBQVUsR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLElBQUksQ0FBQyxDQUFDO29CQUNwQyxJQUFJLFVBQVUsQ0FBQyxLQUFLLElBQUksVUFBVSxDQUFDLE9BQU8sRUFBRSxDQUFDO3dCQUN6QyxxQ0FBcUM7d0JBRXJDLGdDQUFnQzt3QkFDaEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLG1DQUFtQzs0QkFDMUQsVUFBVSxDQUFDLE9BQU8sQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN0RSxPQUFPLENBQUMsd0JBQXdCO3dCQUNwQyxDQUFDO3dCQUVELHdDQUF3Qzt3QkFDeEMsSUFBSSxVQUFVLENBQUMsT0FBTyxLQUFLLHdCQUF3QixJQUFJLFVBQVUsQ0FBQyxJQUFJLEVBQUUsT0FBTyxFQUFFLENBQUM7NEJBQzlFLElBQUksQ0FBQztnQ0FDRCxNQUFNLE9BQU8sR0FBRyxJQUFJLENBQUMsS0FBSyxDQUFDLFVBQVUsQ0FBQyxJQUFJLENBQUMsT0FBTyxDQUFDLENBQUM7Z0NBQ3BELElBQUksT0FBTyxDQUFDLEdBQUcsRUFBRSxDQUFDO29DQUNkLE1BQU0sQ0FBQyxJQUFJLENBQUMsZ0JBQWdCLE9BQU8sQ0FBQyxHQUFHLEVBQUUsRUFBRTt3Q0FDdkMsTUFBTSxFQUFFLE9BQU8sQ0FBQyxNQUFNLENBQUMsQ0FBQyxDQUFDLElBQUksT0FBTyxDQUFDLE1BQU0sQ0FBQyxTQUFTLENBQUMsQ0FBQyxFQUFFLEVBQUUsQ0FBQyxHQUFHLE9BQU8sQ0FBQyxNQUFNLENBQUMsTUFBTSxHQUFHLEVBQUUsQ0FBQyxDQUFDLENBQUMsS0FBSyxDQUFDLENBQUMsQ0FBQyxFQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDckgsR0FBRyxFQUFFLE9BQU8sQ0FBQyxHQUFHO3dDQUNoQixLQUFLLEVBQUUsT0FBTyxDQUFDLEtBQUssRUFBRSxNQUFNLENBQUMsQ0FBQyxDQUFDLEdBQUcsT0FBTyxDQUFDLEtBQUssQ0FBQyxNQUFNLFFBQVEsQ0FBQyxDQUFDLENBQUMsU0FBUzt3Q0FDMUUsU0FBUyxFQUFFLENBQUMsQ0FBQyxPQUFPLENBQUMsTUFBTTtxQ0FDOUIsQ0FBQyxDQUFDO29DQUNILE9BQU87Z0NBQ1gsQ0FBQzs0QkFDTCxDQUFDOzRCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7Z0NBQ1Qsa0NBQWtDOzRCQUN0QyxDQUFDO3dCQUNMLENBQUM7d0JBRUQsUUFBUSxVQUFVLENBQUMsS0FBSyxDQUFDLFdBQVcsRUFBRSxFQUFFLENBQUM7NEJBQ3JDLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVixLQUFLLE1BQU07Z0NBQ1AsTUFBTSxDQUFDLElBQUksQ0FBQyxNQUFNLFVBQVUsQ0FBQyxPQUFPLEVBQUUsRUFBRSxVQUFVLENBQUMsSUFBSSxDQUFDLENBQUM7Z0NBQ3pELE1BQU07NEJBQ1YsS0FBSyxNQUFNO2dDQUNQLE1BQU0sQ0FBQyxJQUFJLENBQUMsTUFBTSxVQUFVLENBQUMsT0FBTyxFQUFFLEVBQUUsVUFBVSxDQUFDLElBQUksQ0FBQyxDQUFDO2dDQUN6RCxNQUFNOzRCQUNWLEtBQUssT0FBTztnQ0FDUixNQUFNLENBQUMsS0FBSyxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQztnQ0FDMUQsTUFBTTs0QkFDVjtnQ0FDSSxNQUFNLENBQUMsSUFBSSxDQUFDLE1BQU0sVUFBVSxDQUFDLE9BQU8sRUFBRSxFQUFFLFVBQVUsQ0FBQyxJQUFJLENBQUMsQ0FBQzt3QkFDakUsQ0FBQztvQkFDTCxDQUFDO3lCQUFNLENBQUM7d0JBQ0oseURBQXlEO3dCQUN6RCxNQUFNLENBQUMsSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsQ0FBQztvQkFDNUIsQ0FBQztnQkFDTCxDQUFDO2dCQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7b0JBQ1Qsa0VBQWtFO29CQUNsRSxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsWUFBWSxDQUFDLEVBQUUsQ0FBQzt3QkFDOUIsbUNBQW1DO3dCQUNuQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsa0NBQWtDLENBQUM7NEJBQ2pELElBQUksQ0FBQyxRQUFRLENBQUMsc0NBQXNDLENBQUMsRUFBRSxDQUFDOzRCQUN4RCxPQUFPLENBQUMsYUFBYTt3QkFDekIsQ0FBQzt3QkFDRCx3REFBd0Q7d0JBQ3hELElBQUksSUFBSSxDQUFDLFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxJQUFJLElBQUksQ0FBQyxRQUFRLENBQUMsc0JBQXNCLENBQUMsSUFBSSxJQUFJLENBQUMsUUFBUSxDQUFDLFdBQVcsQ0FBQyxFQUFFLENBQUM7NEJBQ3pHLE1BQU0sV0FBVyxHQUFHLElBQUksQ0FBQyxPQUFPLENBQUMsbUJBQW1CLEVBQUUsRUFBRSxDQUFDLENBQUMsT0FBTyxDQUFDLFVBQVUsRUFBRSxFQUFFLENBQUMsQ0FBQzs0QkFDbEYsTUFBTSxDQUFDLElBQUksQ0FBQyxJQUFJLEVBQUUsV0FBVyxDQUFDLENBQUM7d0JBQ25DLENBQUM7b0JBQ0wsQ0FBQzt5QkFBTSxJQUFJLElBQUksQ0FBQyxJQUFJLEVBQUUsRUFBRSxDQUFDO3dCQUNyQixnQ0FBZ0M7d0JBQ2hDLE1BQU0sQ0FBQyxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxDQUFDO29CQUM1QixDQUFDO2dCQUNMLENBQUM7WUFDTCxDQUFDO1lBQ0QsV0FBVyxJQUFJLEtBQUssQ0FBQztRQUN6QixDQUFDLENBQUMsQ0FBQztRQUVILFlBQVksQ0FBQyxFQUFFLENBQUMsT0FBTyxFQUFFLENBQUMsSUFBSSxFQUFFLEVBQUU7WUFDOUIsTUFBTSxDQUFDLElBQUksQ0FBQywrQkFBK0IsRUFBRSxJQUFJLENBQUMsQ0FBQztZQUNuRCxNQUFNLENBQUMsSUFBSSxDQUFDLGVBQWUsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLE1BQU0sQ0FBQyxDQUFDLENBQUM7WUFDckQsTUFBTSxDQUFDLElBQUksQ0FBQyxlQUFlLEVBQUUsSUFBSSxDQUFDLFNBQVMsQ0FBQyxXQUFXLENBQUMsQ0FBQyxDQUFDO1lBRTFELElBQUksSUFBSSxLQUFLLENBQUMsRUFBRSxDQUFDO2dCQUNiLE1BQU0sYUFBYSxHQUFHLE1BQU0sQ0FBQyxJQUFJLEVBQUUsQ0FBQztnQkFDcEMsTUFBTSxDQUFDLElBQUksQ0FBQywyQkFBMkIsRUFBRSxJQUFJLENBQUMsU0FBUyxDQUFDLGFBQWEsQ0FBQyxDQUFDLENBQUM7Z0JBQ3hFLFFBQVEsQ0FBQyxhQUFhLElBQUksSUFBSSxDQUFDLENBQUM7WUFDcEMsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLEtBQUssQ0FBQyw4QkFBOEIsSUFBSSxhQUFhLFdBQVcsRUFBRSxDQUFDLENBQUMsQ0FBQztZQUNwRixDQUFDO1FBQ0wsQ0FBQyxDQUFDLENBQUM7UUFFSCxZQUFZLENBQUMsRUFBRSxDQUFDLE9BQU8sRUFBRSxDQUFDLEdBQUcsRUFBRSxFQUFFO1lBQzdCLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQztRQUNoQixDQUFDLENBQUMsQ0FBQztJQUNQLENBQUMsQ0FBQyxDQUFDO0FBQ1AsQ0FBQztBQUVELE1BQU0sQ0FBQyxNQUFNLFlBQVksR0FBRyxLQUFLLEVBQUUsSUFBUyxFQUFFLEVBQUU7SUFDNUMsTUFBTSxNQUFNLEdBQUcsSUFBSSxNQUFNLENBQVUsRUFBRSxRQUFRLEVBQUUsSUFBSSxDQUFDLFFBQVEsSUFBSSxDQUFDLEVBQUUsQ0FBQyxDQUFDO0lBRXJFLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO1FBQ1gsSUFBSSxDQUFDO1lBQ0QsTUFBTSxTQUFTLEdBQUcsTUFBTSxxQkFBcUIsQ0FBQyxJQUFJLENBQUMsQ0FBQztZQUNwRCxJQUFJLFNBQVMsRUFBRSxDQUFDO2dCQUNaLE1BQU0sT0FBTyxHQUFHLElBQUksQ0FBQyxLQUFLLENBQUMsU0FBUyxDQUFDLENBQUM7Z0JBQ3RDLElBQUksQ0FBQyxNQUFNLEdBQUcsT0FBTyxDQUFDLE1BQU0sQ0FBQztnQkFDN0IsSUFBSSxPQUFPLENBQUMsS0FBSyxJQUFJLE9BQU8sQ0FBQyxLQUFLLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO29CQUM1QyxJQUFJLENBQUMsT0FBTyxHQUFHLE9BQU8sQ0FBQyxLQUFLLENBQUM7Z0JBQ2pDLENBQUM7Z0JBQ0QsSUFBSSxPQUFPLENBQUMsR0FBRyxFQUFFLENBQUM7b0JBQ2QsSUFBSSxDQUFDLEdBQUcsR0FBRyxPQUFPLENBQUMsR0FBRyxDQUFDO2dCQUMzQixDQUFDO1lBQ0wsQ0FBQztpQkFBTSxDQUFDO2dCQUNKLE1BQU0sQ0FBQyxJQUFJLENBQUMsd0NBQXdDLENBQUMsQ0FBQztnQkFDdEQsT0FBTztZQUNYLENBQUM7UUFDTCxDQUFDO1FBQUMsT0FBTyxLQUFLLEVBQUUsQ0FBQztZQUNiLE1BQU0sQ0FBQyxLQUFLLENBQUMsb0JBQW9CLEVBQUUsS0FBSyxDQUFDLE9BQU8sQ0FBQyxDQUFDO1lBQ2xELE9BQU87UUFDWCxDQUFDO0lBQ0wsQ0FBQztJQUVELElBQUksSUFBSSxDQUFDLE9BQU8sSUFBSSxRQUFRLENBQUMsSUFBSSxDQUFDLE9BQU8sQ0FBQyxFQUFFLENBQUM7UUFDekMsSUFBSSxDQUFDLE9BQU8sR0FBRyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQztJQUNsQyxDQUFDO0lBRUQsSUFBSSxDQUFDO1FBQ0QsTUFBTSxhQUFhLEdBQUcsa0JBQWtCLEVBQUUsQ0FBQyxLQUFLLENBQUMsSUFBSSxDQUFDLENBQUM7UUFDdkQsTUFBTSxFQUFFLE9BQU8sRUFBRSxHQUFHLEVBQUUsR0FBRyxJQUFJLEVBQUUsR0FBRyxhQUFhLENBQUM7UUFFaEQsTUFBTSxhQUFhLEdBQUcsTUFBTSxhQUFhLENBQUMsYUFBYSxDQUFDLENBQUM7UUFDekQsTUFBTSxNQUFNLEdBQUcsYUFBYSxFQUFFLE9BQWlCLElBQUksRUFBRSxDQUFDO1FBRXRELElBQUksQ0FBQyxNQUFNLElBQUksQ0FBQyxPQUFPLEVBQUUsQ0FBQztZQUN0QixNQUFNLENBQUMsS0FBSyxDQUFDLHlGQUF5RixDQUFDLENBQUM7WUFDeEcsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7WUFDUCxNQUFNLENBQUMsS0FBSyxDQUFDLG9EQUFvRCxDQUFDLENBQUM7WUFDbkUsT0FBTztRQUNYLENBQUM7UUFFRCxJQUFJLFdBQVcsR0FBa0IsSUFBSSxDQUFDO1FBRXRDLElBQUksT0FBTyxJQUFJLE9BQU8sQ0FBQyxPQUFPLENBQUMsSUFBSSxPQUFPLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDO1lBQ3BELGdCQUFnQjtZQUNoQixLQUFLLE1BQU0sU0FBUyxJQUFJLE9BQU8sRUFBRSxDQUFDO2dCQUM5QixJQUFJLENBQUMsTUFBTSxDQUFDLFNBQVMsQ0FBQyxFQUFFLENBQUM7b0JBQ3JCLE1BQU0sQ0FBQyxLQUFLLENBQUMsNkJBQTZCLFNBQVMsRUFBRSxDQUFDLENBQUM7b0JBQ3ZELE9BQU87Z0JBQ1gsQ0FBQztZQUNMLENBQUM7WUFDRCxJQUFJLENBQUMsTUFBTSxFQUFFLENBQUM7Z0JBQ1YsTUFBTSxDQUFDLEtBQUssQ0FBQyx5Q0FBeUMsQ0FBQyxDQUFDO2dCQUN4RCxPQUFPO1lBQ1gsQ0FBQztZQUNELE1BQU0sQ0FBQyxJQUFJLENBQUMscUJBQXFCLE9BQU8sQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLG1CQUFtQixNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ2pGLFdBQVcsR0FBRyxNQUFNLFNBQVMsQ0FBQyxNQUFNLEVBQUUsT0FBTyxFQUFFLGFBQWEsQ0FBQyxDQUFDO1FBQ2xFLENBQUM7YUFBTSxJQUFJLE1BQU0sRUFBRSxDQUFDO1lBQ2hCLGlCQUFpQjtZQUNqQixNQUFNLENBQUMsSUFBSSxDQUFDLGdDQUFnQyxNQUFNLEdBQUcsQ0FBQyxDQUFDO1lBQ3ZELFdBQVcsR0FBRyxNQUFNLFdBQVcsQ0FBQyxNQUFNLEVBQUUsYUFBYSxDQUFDLENBQUM7UUFDM0QsQ0FBQztRQUVELElBQUksV0FBVyxFQUFFLENBQUM7WUFDZCxNQUFNLElBQUksR0FBRyxTQUFTLENBQUMsYUFBYSxDQUFDLENBQUM7WUFDdEMsTUFBTSxPQUFPLEdBQUcsSUFBSSxDQUFDLE9BQU8sQ0FBQyxPQUFPLENBQUMsR0FBRyxFQUFFLGFBQWEsQ0FBQyxHQUFHLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQztZQUNwRSxLQUFLLENBQUMsT0FBTyxFQUFFLFdBQVcsQ0FBQyxDQUFDO1lBQzVCLE1BQU0sQ0FBQyxJQUFJLENBQUMsbUJBQW1CLE9BQU8sRUFBRSxDQUFDLENBQUM7UUFDOUMsQ0FBQzthQUFNLENBQUM7WUFDSixNQUFNLENBQUMsS0FBSyxDQUFDLDJCQUEyQixDQUFDLENBQUM7UUFDOUMsQ0FBQztJQUVMLENBQUM7SUFBQyxPQUFPLEtBQUssRUFBRSxDQUFDO1FBQ2IsTUFBTSxDQUFDLEtBQUssQ0FBQyw0Q0FBNEMsRUFBRSxLQUFLLENBQUMsT0FBTyxFQUFFLEtBQUssQ0FBQyxNQUFNLEVBQUUsS0FBSyxDQUFDLEtBQUssQ0FBQyxDQUFDO0lBQ3pHLENBQUM7QUFDTCxDQUFDLENBQUMifQ==
// EXTERNAL MODULE: ./node_modules/@elevenlabs/elevenlabs-js/index.js
var main_elevenlabs_js = __webpack_require__(91734);
;// ./dist-in/lib/tts-elevenlabs.js
diff --git a/packages/kbot/dist/package-lock.json b/packages/kbot/dist/package-lock.json
index 8fabef85..a86fc6d0 100644
--- a/packages/kbot/dist/package-lock.json
+++ b/packages/kbot/dist/package-lock.json
@@ -1,12 +1,12 @@
{
"name": "@plastichub/kbot",
- "version": "1.1.54",
+ "version": "1.1.55",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@plastichub/kbot",
- "version": "1.1.54",
+ "version": "1.1.55",
"license": "ISC",
"dependencies": {
"node-emoji": "^2.2.0"
diff --git a/packages/kbot/dist/package.json b/packages/kbot/dist/package.json
index 549cf7fe..2016812c 100644
--- a/packages/kbot/dist/package.json
+++ b/packages/kbot/dist/package.json
@@ -1,6 +1,6 @@
{
"name": "@plastichub/kbot",
- "version": "1.1.54",
+ "version": "1.1.55",
"main": "main_node.js",
"author": "",
"license": "ISC",
diff --git a/packages/kbot/docs/images-tauri-5.md b/packages/kbot/docs/images-tauri-5.md
index bf5710cc..486e1660 100644
--- a/packages/kbot/docs/images-tauri-5.md
+++ b/packages/kbot/docs/images-tauri-5.md
@@ -133,3 +133,4 @@ export class WebImageClient {
This structure will be decomposed into a detailed TODO roadmap in the following slice.
+
diff --git a/packages/kbot/src/commands/images.ts b/packages/kbot/src/commands/images.ts
index 25dd7933..395b70c6 100644
--- a/packages/kbot/src/commands/images.ts
+++ b/packages/kbot/src/commands/images.ts
@@ -448,7 +448,6 @@ async function launchGuiAndGetPrompt(argv: any): Promise {
});
}
-
export const imageCommand = async (argv: any) => {
const logger = new Logger({ minLevel: argv.logLevel || 2 });
diff --git a/packages/kbot/src/models/cache/openai-models.ts b/packages/kbot/src/models/cache/openai-models.ts
index 1d545eb8..c5292115 100644
--- a/packages/kbot/src/models/cache/openai-models.ts
+++ b/packages/kbot/src/models/cache/openai-models.ts
@@ -2,11 +2,11 @@ export enum E_OPENAI_MODEL {
MODEL_GPT_4_0613 = "gpt-4-0613",
MODEL_GPT_4 = "gpt-4",
MODEL_GPT_3_5_TURBO = "gpt-3.5-turbo",
- MODEL_GPT_AUDIO = "gpt-audio",
- MODEL_GPT_5_NANO = "gpt-5-nano",
- MODEL_GPT_AUDIO_2025_08_28 = "gpt-audio-2025-08-28",
- MODEL_GPT_REALTIME = "gpt-realtime",
- MODEL_GPT_REALTIME_2025_08_28 = "gpt-realtime-2025-08-28",
+ MODEL_SORA_2_PRO = "sora-2-pro",
+ MODEL_GPT_AUDIO_MINI_2025_10_06 = "gpt-audio-mini-2025-10-06",
+ MODEL_GPT_REALTIME_MINI = "gpt-realtime-mini",
+ MODEL_GPT_REALTIME_MINI_2025_10_06 = "gpt-realtime-mini-2025-10-06",
+ MODEL_SORA_2 = "sora-2",
MODEL_DAVINCI_002 = "davinci-002",
MODEL_BABBAGE_002 = "babbage-002",
MODEL_GPT_3_5_TURBO_INSTRUCT = "gpt-3.5-turbo-instruct",
@@ -81,6 +81,16 @@ export enum E_OPENAI_MODEL {
MODEL_GPT_5_MINI_2025_08_07 = "gpt-5-mini-2025-08-07",
MODEL_GPT_5_MINI = "gpt-5-mini",
MODEL_GPT_5_NANO_2025_08_07 = "gpt-5-nano-2025-08-07",
+ MODEL_GPT_5_NANO = "gpt-5-nano",
+ MODEL_GPT_AUDIO_2025_08_28 = "gpt-audio-2025-08-28",
+ MODEL_GPT_REALTIME = "gpt-realtime",
+ MODEL_GPT_REALTIME_2025_08_28 = "gpt-realtime-2025-08-28",
+ MODEL_GPT_AUDIO = "gpt-audio",
+ MODEL_GPT_5_CODEX = "gpt-5-codex",
+ MODEL_GPT_IMAGE_1_MINI = "gpt-image-1-mini",
+ MODEL_GPT_5_PRO_2025_10_06 = "gpt-5-pro-2025-10-06",
+ MODEL_GPT_5_PRO = "gpt-5-pro",
+ MODEL_GPT_AUDIO_MINI = "gpt-audio-mini",
MODEL_GPT_3_5_TURBO_16K = "gpt-3.5-turbo-16k",
MODEL_TTS_1 = "tts-1",
MODEL_WHISPER_1 = "whisper-1",
diff --git a/packages/kbot/src/models/cache/openrouter-models-free.ts b/packages/kbot/src/models/cache/openrouter-models-free.ts
index ad786b99..37f6e0f8 100644
--- a/packages/kbot/src/models/cache/openrouter-models-free.ts
+++ b/packages/kbot/src/models/cache/openrouter-models-free.ts
@@ -1,8 +1,8 @@
export enum E_OPENROUTER_MODEL_FREE {
- MODEL_FREE_X_AI_GROK_4_FAST_FREE = "x-ai/grok-4-fast:free",
+ MODEL_FREE_ALIBABA_TONGYI_DEEPRESEARCH_30B_A3B_FREE = "alibaba/tongyi-deepresearch-30b-a3b:free",
+ MODEL_FREE_MEITUAN_LONGCAT_FLASH_CHAT_FREE = "meituan/longcat-flash-chat:free",
MODEL_FREE_NVIDIA_NEMOTRON_NANO_9B_V2_FREE = "nvidia/nemotron-nano-9b-v2:free",
MODEL_FREE_DEEPSEEK_DEEPSEEK_CHAT_V3_1_FREE = "deepseek/deepseek-chat-v3.1:free",
- MODEL_FREE_OPENAI_GPT_OSS_120B_FREE = "openai/gpt-oss-120b:free",
MODEL_FREE_OPENAI_GPT_OSS_20B_FREE = "openai/gpt-oss-20b:free",
MODEL_FREE_Z_AI_GLM_4_5_AIR_FREE = "z-ai/glm-4.5-air:free",
MODEL_FREE_QWEN_QWEN3_CODER_FREE = "qwen/qwen3-coder:free",
@@ -28,7 +28,6 @@ export enum E_OPENROUTER_MODEL_FREE {
MODEL_FREE_SHISA_AI_SHISA_V2_LLAMA3_3_70B_FREE = "shisa-ai/shisa-v2-llama3.3-70b:free",
MODEL_FREE_ARLIAI_QWQ_32B_ARLIAI_RPR_V1_FREE = "arliai/qwq-32b-arliai-rpr-v1:free",
MODEL_FREE_AGENTICA_ORG_DEEPCODER_14B_PREVIEW_FREE = "agentica-org/deepcoder-14b-preview:free",
- MODEL_FREE_MOONSHOTAI_KIMI_VL_A3B_THINKING_FREE = "moonshotai/kimi-vl-a3b-thinking:free",
MODEL_FREE_META_LLAMA_LLAMA_4_MAVERICK_FREE = "meta-llama/llama-4-maverick:free",
MODEL_FREE_META_LLAMA_LLAMA_4_SCOUT_FREE = "meta-llama/llama-4-scout:free",
MODEL_FREE_QWEN_QWEN2_5_VL_32B_INSTRUCT_FREE = "qwen/qwen2.5-vl-32b-instruct:free",
@@ -37,9 +36,7 @@ export enum E_OPENROUTER_MODEL_FREE {
MODEL_FREE_GOOGLE_GEMMA_3_4B_IT_FREE = "google/gemma-3-4b-it:free",
MODEL_FREE_GOOGLE_GEMMA_3_12B_IT_FREE = "google/gemma-3-12b-it:free",
MODEL_FREE_GOOGLE_GEMMA_3_27B_IT_FREE = "google/gemma-3-27b-it:free",
- MODEL_FREE_QWEN_QWQ_32B_FREE = "qwen/qwq-32b:free",
MODEL_FREE_NOUSRESEARCH_DEEPHERMES_3_LLAMA_3_8B_PREVIEW_FREE = "nousresearch/deephermes-3-llama-3-8b-preview:free",
- MODEL_FREE_COGNITIVECOMPUTATIONS_DOLPHIN3_0_R1_MISTRAL_24B_FREE = "cognitivecomputations/dolphin3.0-r1-mistral-24b:free",
MODEL_FREE_COGNITIVECOMPUTATIONS_DOLPHIN3_0_MISTRAL_24B_FREE = "cognitivecomputations/dolphin3.0-mistral-24b:free",
MODEL_FREE_QWEN_QWEN2_5_VL_72B_INSTRUCT_FREE = "qwen/qwen2.5-vl-72b-instruct:free",
MODEL_FREE_MISTRALAI_MISTRAL_SMALL_24B_INSTRUCT_2501_FREE = "mistralai/mistral-small-24b-instruct-2501:free",
@@ -50,7 +47,6 @@ export enum E_OPENROUTER_MODEL_FREE {
MODEL_FREE_QWEN_QWEN_2_5_CODER_32B_INSTRUCT_FREE = "qwen/qwen-2.5-coder-32b-instruct:free",
MODEL_FREE_META_LLAMA_LLAMA_3_2_3B_INSTRUCT_FREE = "meta-llama/llama-3.2-3b-instruct:free",
MODEL_FREE_QWEN_QWEN_2_5_72B_INSTRUCT_FREE = "qwen/qwen-2.5-72b-instruct:free",
- MODEL_FREE_META_LLAMA_LLAMA_3_1_405B_INSTRUCT_FREE = "meta-llama/llama-3.1-405b-instruct:free",
MODEL_FREE_MISTRALAI_MISTRAL_NEMO_FREE = "mistralai/mistral-nemo:free",
MODEL_FREE_GOOGLE_GEMMA_2_9B_IT_FREE = "google/gemma-2-9b-it:free",
MODEL_FREE_MISTRALAI_MISTRAL_7B_INSTRUCT_FREE = "mistralai/mistral-7b-instruct:free"
diff --git a/packages/kbot/src/models/cache/openrouter-models.ts b/packages/kbot/src/models/cache/openrouter-models.ts
index 47df4f89..13f2e3ea 100644
--- a/packages/kbot/src/models/cache/openrouter-models.ts
+++ b/packages/kbot/src/models/cache/openrouter-models.ts
@@ -1,20 +1,39 @@
export enum E_OPENROUTER_MODEL {
- MODEL_X_AI_GROK_4_FAST_FREE = "x-ai/grok-4-fast:free",
+ MODEL_INCLUSIONAI_LING_1T = "inclusionai/ling-1t",
+ MODEL_NVIDIA_LLAMA_3_3_NEMOTRON_SUPER_49B_V1_5 = "nvidia/llama-3.3-nemotron-super-49b-v1.5",
+ MODEL_BAIDU_ERNIE_4_5_21B_A3B_THINKING = "baidu/ernie-4.5-21b-a3b-thinking",
+ MODEL_GOOGLE_GEMINI_2_5_FLASH_IMAGE = "google/gemini-2.5-flash-image",
+ MODEL_QWEN_QWEN3_VL_30B_A3B_THINKING = "qwen/qwen3-vl-30b-a3b-thinking",
+ MODEL_QWEN_QWEN3_VL_30B_A3B_INSTRUCT = "qwen/qwen3-vl-30b-a3b-instruct",
+ MODEL_OPENAI_GPT_5_PRO = "openai/gpt-5-pro",
+ MODEL_Z_AI_GLM_4_6 = "z-ai/glm-4.6",
+ MODEL_ANTHROPIC_CLAUDE_SONNET_4_5 = "anthropic/claude-sonnet-4.5",
+ MODEL_DEEPSEEK_DEEPSEEK_V3_2_EXP = "deepseek/deepseek-v3.2-exp",
+ MODEL_THEDRUMMER_CYDONIA_24B_V4_1 = "thedrummer/cydonia-24b-v4.1",
+ MODEL_RELACE_RELACE_APPLY_3 = "relace/relace-apply-3",
+ MODEL_GOOGLE_GEMINI_2_5_FLASH_PREVIEW_09_2025 = "google/gemini-2.5-flash-preview-09-2025",
+ MODEL_GOOGLE_GEMINI_2_5_FLASH_LITE_PREVIEW_09_2025 = "google/gemini-2.5-flash-lite-preview-09-2025",
+ MODEL_QWEN_QWEN3_VL_235B_A22B_THINKING = "qwen/qwen3-vl-235b-a22b-thinking",
+ MODEL_QWEN_QWEN3_VL_235B_A22B_INSTRUCT = "qwen/qwen3-vl-235b-a22b-instruct",
+ MODEL_QWEN_QWEN3_MAX = "qwen/qwen3-max",
+ MODEL_QWEN_QWEN3_CODER_PLUS = "qwen/qwen3-coder-plus",
+ MODEL_OPENAI_GPT_5_CODEX = "openai/gpt-5-codex",
+ MODEL_DEEPSEEK_DEEPSEEK_V3_1_TERMINUS = "deepseek/deepseek-v3.1-terminus",
+ MODEL_X_AI_GROK_4_FAST = "x-ai/grok-4-fast",
+ MODEL_ALIBABA_TONGYI_DEEPRESEARCH_30B_A3B_FREE = "alibaba/tongyi-deepresearch-30b-a3b:free",
MODEL_ALIBABA_TONGYI_DEEPRESEARCH_30B_A3B = "alibaba/tongyi-deepresearch-30b-a3b",
MODEL_QWEN_QWEN3_CODER_FLASH = "qwen/qwen3-coder-flash",
- MODEL_QWEN_QWEN3_CODER_PLUS = "qwen/qwen3-coder-plus",
MODEL_ARCEE_AI_AFM_4_5B = "arcee-ai/afm-4.5b",
MODEL_OPENGVLAB_INTERNVL3_78B = "opengvlab/internvl3-78b",
MODEL_QWEN_QWEN3_NEXT_80B_A3B_THINKING = "qwen/qwen3-next-80b-a3b-thinking",
MODEL_QWEN_QWEN3_NEXT_80B_A3B_INSTRUCT = "qwen/qwen3-next-80b-a3b-instruct",
+ MODEL_MEITUAN_LONGCAT_FLASH_CHAT_FREE = "meituan/longcat-flash-chat:free",
MODEL_MEITUAN_LONGCAT_FLASH_CHAT = "meituan/longcat-flash-chat",
MODEL_QWEN_QWEN_PLUS_2025_07_28 = "qwen/qwen-plus-2025-07-28",
MODEL_QWEN_QWEN_PLUS_2025_07_28_THINKING = "qwen/qwen-plus-2025-07-28:thinking",
MODEL_NVIDIA_NEMOTRON_NANO_9B_V2_FREE = "nvidia/nemotron-nano-9b-v2:free",
MODEL_NVIDIA_NEMOTRON_NANO_9B_V2 = "nvidia/nemotron-nano-9b-v2",
- MODEL_QWEN_QWEN3_MAX = "qwen/qwen3-max",
MODEL_MOONSHOTAI_KIMI_K2_0905 = "moonshotai/kimi-k2-0905",
- MODEL_BYTEDANCE_SEED_OSS_36B_INSTRUCT = "bytedance/seed-oss-36b-instruct",
MODEL_DEEPCOGITO_COGITO_V2_PREVIEW_LLAMA_109B_MOE = "deepcogito/cogito-v2-preview-llama-109b-moe",
MODEL_DEEPCOGITO_COGITO_V2_PREVIEW_DEEPSEEK_671B = "deepcogito/cogito-v2-preview-deepseek-671b",
MODEL_STEPFUN_AI_STEP3 = "stepfun-ai/step3",
@@ -25,7 +44,6 @@ export enum E_OPENROUTER_MODEL {
MODEL_GOOGLE_GEMINI_2_5_FLASH_IMAGE_PREVIEW = "google/gemini-2.5-flash-image-preview",
MODEL_DEEPSEEK_DEEPSEEK_CHAT_V3_1_FREE = "deepseek/deepseek-chat-v3.1:free",
MODEL_DEEPSEEK_DEEPSEEK_CHAT_V3_1 = "deepseek/deepseek-chat-v3.1",
- MODEL_DEEPSEEK_DEEPSEEK_V3_1_BASE = "deepseek/deepseek-v3.1-base",
MODEL_OPENAI_GPT_4O_AUDIO_PREVIEW = "openai/gpt-4o-audio-preview",
MODEL_MISTRALAI_MISTRAL_MEDIUM_3_1 = "mistralai/mistral-medium-3.1",
MODEL_BAIDU_ERNIE_4_5_21B_A3B = "baidu/ernie-4.5-21b-a3b",
@@ -37,7 +55,6 @@ export enum E_OPENROUTER_MODEL {
MODEL_OPENAI_GPT_5 = "openai/gpt-5",
MODEL_OPENAI_GPT_5_MINI = "openai/gpt-5-mini",
MODEL_OPENAI_GPT_5_NANO = "openai/gpt-5-nano",
- MODEL_OPENAI_GPT_OSS_120B_FREE = "openai/gpt-oss-120b:free",
MODEL_OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b",
MODEL_OPENAI_GPT_OSS_20B_FREE = "openai/gpt-oss-20b:free",
MODEL_OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b",
@@ -67,6 +84,7 @@ export enum E_OPENROUTER_MODEL {
MODEL_TENCENT_HUNYUAN_A13B_INSTRUCT_FREE = "tencent/hunyuan-a13b-instruct:free",
MODEL_TENCENT_HUNYUAN_A13B_INSTRUCT = "tencent/hunyuan-a13b-instruct",
MODEL_TNGTECH_DEEPSEEK_R1T2_CHIMERA_FREE = "tngtech/deepseek-r1t2-chimera:free",
+ MODEL_TNGTECH_DEEPSEEK_R1T2_CHIMERA = "tngtech/deepseek-r1t2-chimera",
MODEL_MORPH_MORPH_V3_LARGE = "morph/morph-v3-large",
MODEL_MORPH_MORPH_V3_FAST = "morph/morph-v3-fast",
MODEL_BAIDU_ERNIE_4_5_VL_424B_A47B = "baidu/ernie-4.5-vl-424b-a47b",
@@ -131,6 +149,7 @@ export enum E_OPENROUTER_MODEL {
MODEL_OPENAI_O4_MINI = "openai/o4-mini",
MODEL_SHISA_AI_SHISA_V2_LLAMA3_3_70B_FREE = "shisa-ai/shisa-v2-llama3.3-70b:free",
MODEL_SHISA_AI_SHISA_V2_LLAMA3_3_70B = "shisa-ai/shisa-v2-llama3.3-70b",
+ MODEL_QWEN_QWEN2_5_CODER_7B_INSTRUCT = "qwen/qwen2.5-coder-7b-instruct",
MODEL_OPENAI_GPT_4_1 = "openai/gpt-4.1",
MODEL_OPENAI_GPT_4_1_MINI = "openai/gpt-4.1-mini",
MODEL_OPENAI_GPT_4_1_NANO = "openai/gpt-4.1-nano",
@@ -140,8 +159,6 @@ export enum E_OPENROUTER_MODEL {
MODEL_ARLIAI_QWQ_32B_ARLIAI_RPR_V1 = "arliai/qwq-32b-arliai-rpr-v1",
MODEL_AGENTICA_ORG_DEEPCODER_14B_PREVIEW_FREE = "agentica-org/deepcoder-14b-preview:free",
MODEL_AGENTICA_ORG_DEEPCODER_14B_PREVIEW = "agentica-org/deepcoder-14b-preview",
- MODEL_MOONSHOTAI_KIMI_VL_A3B_THINKING_FREE = "moonshotai/kimi-vl-a3b-thinking:free",
- MODEL_MOONSHOTAI_KIMI_VL_A3B_THINKING = "moonshotai/kimi-vl-a3b-thinking",
MODEL_X_AI_GROK_3_MINI_BETA = "x-ai/grok-3-mini-beta",
MODEL_X_AI_GROK_3_BETA = "x-ai/grok-3-beta",
MODEL_NVIDIA_LLAMA_3_1_NEMOTRON_ULTRA_253B_V1 = "nvidia/llama-3.1-nemotron-ultra-253b-v1",
@@ -167,27 +184,23 @@ export enum E_OPENROUTER_MODEL {
MODEL_OPENAI_GPT_4O_SEARCH_PREVIEW = "openai/gpt-4o-search-preview",
MODEL_GOOGLE_GEMMA_3_27B_IT_FREE = "google/gemma-3-27b-it:free",
MODEL_GOOGLE_GEMMA_3_27B_IT = "google/gemma-3-27b-it",
- MODEL_THEDRUMMER_ANUBIS_PRO_105B_V1 = "thedrummer/anubis-pro-105b-v1",
MODEL_THEDRUMMER_SKYFALL_36B_V2 = "thedrummer/skyfall-36b-v2",
MODEL_MICROSOFT_PHI_4_MULTIMODAL_INSTRUCT = "microsoft/phi-4-multimodal-instruct",
MODEL_PERPLEXITY_SONAR_REASONING_PRO = "perplexity/sonar-reasoning-pro",
MODEL_PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro",
MODEL_PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research",
- MODEL_QWEN_QWQ_32B_FREE = "qwen/qwq-32b:free",
MODEL_QWEN_QWQ_32B = "qwen/qwq-32b",
MODEL_NOUSRESEARCH_DEEPHERMES_3_LLAMA_3_8B_PREVIEW_FREE = "nousresearch/deephermes-3-llama-3-8b-preview:free",
+ MODEL_NOUSRESEARCH_DEEPHERMES_3_LLAMA_3_8B_PREVIEW = "nousresearch/deephermes-3-llama-3-8b-preview",
MODEL_GOOGLE_GEMINI_2_0_FLASH_LITE_001 = "google/gemini-2.0-flash-lite-001",
MODEL_ANTHROPIC_CLAUDE_3_7_SONNET = "anthropic/claude-3.7-sonnet",
MODEL_ANTHROPIC_CLAUDE_3_7_SONNET_THINKING = "anthropic/claude-3.7-sonnet:thinking",
MODEL_PERPLEXITY_R1_1776 = "perplexity/r1-1776",
MODEL_MISTRALAI_MISTRAL_SABA = "mistralai/mistral-saba",
- MODEL_COGNITIVECOMPUTATIONS_DOLPHIN3_0_R1_MISTRAL_24B_FREE = "cognitivecomputations/dolphin3.0-r1-mistral-24b:free",
- MODEL_COGNITIVECOMPUTATIONS_DOLPHIN3_0_R1_MISTRAL_24B = "cognitivecomputations/dolphin3.0-r1-mistral-24b",
MODEL_COGNITIVECOMPUTATIONS_DOLPHIN3_0_MISTRAL_24B_FREE = "cognitivecomputations/dolphin3.0-mistral-24b:free",
MODEL_COGNITIVECOMPUTATIONS_DOLPHIN3_0_MISTRAL_24B = "cognitivecomputations/dolphin3.0-mistral-24b",
MODEL_META_LLAMA_LLAMA_GUARD_3_8B = "meta-llama/llama-guard-3-8b",
MODEL_OPENAI_O3_MINI_HIGH = "openai/o3-mini-high",
- MODEL_DEEPSEEK_DEEPSEEK_R1_DISTILL_LLAMA_8B = "deepseek/deepseek-r1-distill-llama-8b",
MODEL_GOOGLE_GEMINI_2_0_FLASH_001 = "google/gemini-2.0-flash-001",
MODEL_QWEN_QWEN_VL_PLUS = "qwen/qwen-vl-plus",
MODEL_AION_LABS_AION_1_0 = "aion-labs/aion-1.0",
@@ -215,6 +228,7 @@ export enum E_OPENROUTER_MODEL {
MODEL_MINIMAX_MINIMAX_01 = "minimax/minimax-01",
MODEL_MISTRALAI_CODESTRAL_2501 = "mistralai/codestral-2501",
MODEL_MICROSOFT_PHI_4 = "microsoft/phi-4",
+ MODEL_SAO10K_L3_1_70B_HANAMI_X1 = "sao10k/l3.1-70b-hanami-x1",
MODEL_DEEPSEEK_DEEPSEEK_CHAT = "deepseek/deepseek-chat",
MODEL_SAO10K_L3_3_EURYALE_70B = "sao10k/l3.3-euryale-70b",
MODEL_OPENAI_O1 = "openai/o1",
@@ -225,7 +239,6 @@ export enum E_OPENROUTER_MODEL {
MODEL_AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1",
MODEL_AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1",
MODEL_AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1",
- MODEL_QWEN_QWQ_32B_PREVIEW = "qwen/qwq-32b-preview",
MODEL_OPENAI_GPT_4O_2024_11_20 = "openai/gpt-4o-2024-11-20",
MODEL_MISTRALAI_MISTRAL_LARGE_2411 = "mistralai/mistral-large-2411",
MODEL_MISTRALAI_MISTRAL_LARGE_2407 = "mistralai/mistral-large-2407",
@@ -236,30 +249,29 @@ export enum E_OPENROUTER_MODEL {
MODEL_THEDRUMMER_UNSLOPNEMO_12B = "thedrummer/unslopnemo-12b",
MODEL_ANTHROPIC_CLAUDE_3_5_HAIKU = "anthropic/claude-3.5-haiku",
MODEL_ANTHROPIC_CLAUDE_3_5_HAIKU_20241022 = "anthropic/claude-3.5-haiku-20241022",
- MODEL_ANTHRACITE_ORG_MAGNUM_V4_72B = "anthracite-org/magnum-v4-72b",
MODEL_ANTHROPIC_CLAUDE_3_5_SONNET = "anthropic/claude-3.5-sonnet",
+ MODEL_ANTHRACITE_ORG_MAGNUM_V4_72B = "anthracite-org/magnum-v4-72b",
MODEL_MISTRALAI_MINISTRAL_8B = "mistralai/ministral-8b",
MODEL_MISTRALAI_MINISTRAL_3B = "mistralai/ministral-3b",
MODEL_QWEN_QWEN_2_5_7B_INSTRUCT = "qwen/qwen-2.5-7b-instruct",
MODEL_NVIDIA_LLAMA_3_1_NEMOTRON_70B_INSTRUCT = "nvidia/llama-3.1-nemotron-70b-instruct",
MODEL_INFLECTION_INFLECTION_3_PRODUCTIVITY = "inflection/inflection-3-productivity",
MODEL_INFLECTION_INFLECTION_3_PI = "inflection/inflection-3-pi",
- MODEL_GOOGLE_GEMINI_FLASH_1_5_8B = "google/gemini-flash-1.5-8b",
MODEL_THEDRUMMER_ROCINANTE_12B = "thedrummer/rocinante-12b",
MODEL_ANTHRACITE_ORG_MAGNUM_V2_72B = "anthracite-org/magnum-v2-72b",
MODEL_META_LLAMA_LLAMA_3_2_3B_INSTRUCT_FREE = "meta-llama/llama-3.2-3b-instruct:free",
MODEL_META_LLAMA_LLAMA_3_2_3B_INSTRUCT = "meta-llama/llama-3.2-3b-instruct",
MODEL_META_LLAMA_LLAMA_3_2_1B_INSTRUCT = "meta-llama/llama-3.2-1b-instruct",
- MODEL_META_LLAMA_LLAMA_3_2_90B_VISION_INSTRUCT = "meta-llama/llama-3.2-90b-vision-instruct",
MODEL_META_LLAMA_LLAMA_3_2_11B_VISION_INSTRUCT = "meta-llama/llama-3.2-11b-vision-instruct",
+ MODEL_META_LLAMA_LLAMA_3_2_90B_VISION_INSTRUCT = "meta-llama/llama-3.2-90b-vision-instruct",
MODEL_QWEN_QWEN_2_5_72B_INSTRUCT_FREE = "qwen/qwen-2.5-72b-instruct:free",
MODEL_QWEN_QWEN_2_5_72B_INSTRUCT = "qwen/qwen-2.5-72b-instruct",
MODEL_NEVERSLEEP_LLAMA_3_1_LUMIMAID_8B = "neversleep/llama-3.1-lumimaid-8b",
MODEL_OPENAI_O1_MINI = "openai/o1-mini",
MODEL_OPENAI_O1_MINI_2024_09_12 = "openai/o1-mini-2024-09-12",
MODEL_MISTRALAI_PIXTRAL_12B = "mistralai/pixtral-12b",
- MODEL_COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024",
MODEL_COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024",
+ MODEL_COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024",
MODEL_QWEN_QWEN_2_5_VL_7B_INSTRUCT = "qwen/qwen-2.5-vl-7b-instruct",
MODEL_SAO10K_L3_1_EURYALE_70B = "sao10k/l3.1-euryale-70b",
MODEL_MICROSOFT_PHI_3_5_MINI_128K_INSTRUCT = "microsoft/phi-3.5-mini-128k-instruct",
@@ -269,61 +281,53 @@ export enum E_OPENROUTER_MODEL {
MODEL_SAO10K_L3_LUNARIS_8B = "sao10k/l3-lunaris-8b",
MODEL_OPENAI_GPT_4O_2024_08_06 = "openai/gpt-4o-2024-08-06",
MODEL_META_LLAMA_LLAMA_3_1_405B = "meta-llama/llama-3.1-405b",
- MODEL_META_LLAMA_LLAMA_3_1_8B_INSTRUCT = "meta-llama/llama-3.1-8b-instruct",
- MODEL_META_LLAMA_LLAMA_3_1_405B_INSTRUCT_FREE = "meta-llama/llama-3.1-405b-instruct:free",
MODEL_META_LLAMA_LLAMA_3_1_405B_INSTRUCT = "meta-llama/llama-3.1-405b-instruct",
+ MODEL_META_LLAMA_LLAMA_3_1_8B_INSTRUCT = "meta-llama/llama-3.1-8b-instruct",
MODEL_META_LLAMA_LLAMA_3_1_70B_INSTRUCT = "meta-llama/llama-3.1-70b-instruct",
MODEL_MISTRALAI_MISTRAL_NEMO_FREE = "mistralai/mistral-nemo:free",
MODEL_MISTRALAI_MISTRAL_NEMO = "mistralai/mistral-nemo",
- MODEL_OPENAI_GPT_4O_MINI = "openai/gpt-4o-mini",
MODEL_OPENAI_GPT_4O_MINI_2024_07_18 = "openai/gpt-4o-mini-2024-07-18",
+ MODEL_OPENAI_GPT_4O_MINI = "openai/gpt-4o-mini",
MODEL_GOOGLE_GEMMA_2_27B_IT = "google/gemma-2-27b-it",
MODEL_GOOGLE_GEMMA_2_9B_IT_FREE = "google/gemma-2-9b-it:free",
MODEL_GOOGLE_GEMMA_2_9B_IT = "google/gemma-2-9b-it",
MODEL_ANTHROPIC_CLAUDE_3_5_SONNET_20240620 = "anthropic/claude-3.5-sonnet-20240620",
MODEL_SAO10K_L3_EURYALE_70B = "sao10k/l3-euryale-70b",
+ MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT_V0_3 = "mistralai/mistral-7b-instruct-v0.3",
MODEL_NOUSRESEARCH_HERMES_2_PRO_LLAMA_3_8B = "nousresearch/hermes-2-pro-llama-3-8b",
MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT_FREE = "mistralai/mistral-7b-instruct:free",
MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT = "mistralai/mistral-7b-instruct",
- MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT_V0_3 = "mistralai/mistral-7b-instruct-v0.3",
MODEL_MICROSOFT_PHI_3_MINI_128K_INSTRUCT = "microsoft/phi-3-mini-128k-instruct",
MODEL_MICROSOFT_PHI_3_MEDIUM_128K_INSTRUCT = "microsoft/phi-3-medium-128k-instruct",
- MODEL_NEVERSLEEP_LLAMA_3_LUMIMAID_70B = "neversleep/llama-3-lumimaid-70b",
- MODEL_GOOGLE_GEMINI_FLASH_1_5 = "google/gemini-flash-1.5",
MODEL_OPENAI_GPT_4O = "openai/gpt-4o",
MODEL_OPENAI_GPT_4O_EXTENDED = "openai/gpt-4o:extended",
- MODEL_META_LLAMA_LLAMA_GUARD_2_8B = "meta-llama/llama-guard-2-8b",
MODEL_OPENAI_GPT_4O_2024_05_13 = "openai/gpt-4o-2024-05-13",
+ MODEL_META_LLAMA_LLAMA_GUARD_2_8B = "meta-llama/llama-guard-2-8b",
MODEL_META_LLAMA_LLAMA_3_8B_INSTRUCT = "meta-llama/llama-3-8b-instruct",
MODEL_META_LLAMA_LLAMA_3_70B_INSTRUCT = "meta-llama/llama-3-70b-instruct",
MODEL_MISTRALAI_MIXTRAL_8X22B_INSTRUCT = "mistralai/mixtral-8x22b-instruct",
MODEL_MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b",
- MODEL_GOOGLE_GEMINI_PRO_1_5 = "google/gemini-pro-1.5",
MODEL_OPENAI_GPT_4_TURBO = "openai/gpt-4-turbo",
- MODEL_COHERE_COMMAND_R_PLUS = "cohere/command-r-plus",
- MODEL_COHERE_COMMAND_R_PLUS_04_2024 = "cohere/command-r-plus-04-2024",
- MODEL_COHERE_COMMAND = "cohere/command",
- MODEL_COHERE_COMMAND_R = "cohere/command-r",
MODEL_ANTHROPIC_CLAUDE_3_HAIKU = "anthropic/claude-3-haiku",
MODEL_ANTHROPIC_CLAUDE_3_OPUS = "anthropic/claude-3-opus",
- MODEL_COHERE_COMMAND_R_03_2024 = "cohere/command-r-03-2024",
MODEL_MISTRALAI_MISTRAL_LARGE = "mistralai/mistral-large",
MODEL_OPENAI_GPT_3_5_TURBO_0613 = "openai/gpt-3.5-turbo-0613",
MODEL_OPENAI_GPT_4_TURBO_PREVIEW = "openai/gpt-4-turbo-preview",
- MODEL_MISTRALAI_MISTRAL_SMALL = "mistralai/mistral-small",
MODEL_MISTRALAI_MISTRAL_TINY = "mistralai/mistral-tiny",
+ MODEL_MISTRALAI_MISTRAL_SMALL = "mistralai/mistral-small",
+ MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT_V0_2 = "mistralai/mistral-7b-instruct-v0.2",
MODEL_MISTRALAI_MIXTRAL_8X7B_INSTRUCT = "mistralai/mixtral-8x7b-instruct",
MODEL_NEVERSLEEP_NOROMAID_20B = "neversleep/noromaid-20b",
MODEL_ALPINDALE_GOLIATH_120B = "alpindale/goliath-120b",
MODEL_OPENROUTER_AUTO = "openrouter/auto",
MODEL_OPENAI_GPT_4_1106_PREVIEW = "openai/gpt-4-1106-preview",
- MODEL_OPENAI_GPT_3_5_TURBO_INSTRUCT = "openai/gpt-3.5-turbo-instruct",
MODEL_MISTRALAI_MISTRAL_7B_INSTRUCT_V0_1 = "mistralai/mistral-7b-instruct-v0.1",
+ MODEL_OPENAI_GPT_3_5_TURBO_INSTRUCT = "openai/gpt-3.5-turbo-instruct",
MODEL_OPENAI_GPT_3_5_TURBO_16K = "openai/gpt-3.5-turbo-16k",
MODEL_MANCER_WEAVER = "mancer/weaver",
MODEL_UNDI95_REMM_SLERP_L2_13B = "undi95/remm-slerp-l2-13b",
MODEL_GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b",
MODEL_OPENAI_GPT_3_5_TURBO = "openai/gpt-3.5-turbo",
- MODEL_OPENAI_GPT_4 = "openai/gpt-4",
- MODEL_OPENAI_GPT_4_0314 = "openai/gpt-4-0314"
+ MODEL_OPENAI_GPT_4_0314 = "openai/gpt-4-0314",
+ MODEL_OPENAI_GPT_4 = "openai/gpt-4"
}
\ No newline at end of file
diff --git a/packages/kbot/tests/scripted/files.sh b/packages/kbot/tests/scripted/files.sh
deleted file mode 100644
index 85e24a66..00000000
--- a/packages/kbot/tests/scripted/files.sh
+++ /dev/null
@@ -1,6 +0,0 @@
-kbot-d "Create a comprehensive Readme.md, in ./tests/scripted/readme.md (installation, usage, examples, etc), with Mermaid diagrams (no braces in node names)" \
- --model=openai/o3-mini \
- --disable=npm,terminal,interact,git,search,web,user,email \
- --include=./src/commands/*.ts \
- --preferences=none \
- --logLevel=2
diff --git a/packages/kbot/tests/scripted/readme.md b/packages/kbot/tests/scripted/readme.md
deleted file mode 100644
index a7ce51e5..00000000
--- a/packages/kbot/tests/scripted/readme.md
+++ /dev/null
@@ -1,147 +0,0 @@
-KBot - Command Line AI Assistant
-================================
-
-KBot is a powerful command line tool that leverages AI models to assist with code generation, file summarization, multi-file processing, and more.
-
-Table of Contents
------------------
-
-- [Installation](#installation)
-- [Usage](#usage)
-- [Examples](#examples)
-- [Architecture](#architecture)
-- [Configuration](#configuration)
-- [Development](#development)
-- [License](#license)
-
-Installation
-------------
-
-1. Ensure you have [Node.js](https://nodejs.org/) installed (version 14+ recommended).
-2. Clone the repository:
-
-```bash
-git clone https://github.com/yourusername/kbot.git
-cd kbot
-```
-
-3. Install dependencies:
-
-```bash
-npm install
-```
-
-4. Build the project (if applicable):
-
-```bash
-npm run build
-```
-
-Usage
------
-
-KBot provides a rich set of commands for interacting with AI tools. Here are some common commands:
-
-- **Run a task:**
-
-```bash
-kbot run --prompt "Summarize the project" --path ./src
-```
-
-- **Fetch available models:**
-
-```bash
-kbot fetch
-```
-
-- **Modify configurations:**
-
-```bash
-kbot init
-```
-
-Examples
---------
-
-Below are some usage examples:
-
-1. **Summarize Project Files**:
-
-```bash
-kbot run --prompt "Give me a summary of the project files" --path ./my_project --include "*.js"
-```
-
-2. **Generate Documentation**:
-
-```bash
-kbot run --prompt "Generate documentation for the codebase" --dst ./docs/README.md
-```
-
-3. **Personalized Assistant**:
-
-Use your own preferences and profiles stored in `./.kbot/preferences.md` for a personalized experience.
-
-Architecture
-------------
-
-The following Mermaid diagram illustrates the high-level architecture of KBot:
-
-```mermaid
-flowchart TD
-Start[Start] --> Config[Load Config]
-Config --> Init[Initialize Client]
-Init --> Process[Process Request]
-Process --> Options[Set Options]
-Options --> Execute[Execute Task]
-Execute --> End[Return Result]
-```
-
-The flow begins with startup, loads the configuration (preferences and settings), initializes the API client, gathers and processes user requests, sets task-specific options, executes the task (running the completion, tools, or assistant mode), and finally returns the result.
-
-Configuration
--------------
-
-KBot uses a configuration file located at `./.kbot/config.json` and a preferences file at `./.kbot/preferences.md` to customize behavior:
-
-- **config.json**: Contains API keys and service configurations for OpenAI, OpenRouter, and more.
-- **preferences.md**: Stores personal information to tailor the assistant responses.
-
-Development
------------
-
-- **Run tests:**
-
-```bash
-npm test
-```
-
-- **Build the project:**
-
-```bash
-npm run build
-```
-
-- **Lint the code:**
-
-```bash
-npm run lint
-```
-
-Mermaid Diagrams
-----------------
-
-Mermaid diagrams are used to visually represent the various components and flows within KBot. Here is another example diagram illustrating the internal processing:
-
-```mermaid
-flowchart LR
-User[User Input] --> CLI[Command Line Parser]
-CLI --> Processor[Task Processor]
-Processor --> API[API Client]
-API --> Collector[Response Collector]
-Collector --> Output[Display Output]
-```
-
-License
--------
-
-This project is licensed under the MIT License.