freecad fuckery :)

This commit is contained in:
babayaga 2025-07-04 18:06:29 +02:00
parent d3c45bff2f
commit 8a7be7a68d
9 changed files with 566 additions and 73 deletions

View File

@ -1,25 +0,0 @@
# Saw Operator Cut Plan
## Board Dimensions: `500 x 500 mm`
## Specifications
* **V-Groove Spec:** Depth `5 mm`
* **Slot Spec:** Width `8 mm`, Depth `5 mm`
## Blade Setup
* **For V-Grooves:** Set saw blade angle to **45 degrees**.
* **For Slots:** Set saw blade angle to **0 degrees** (straight up).
## SETUP 1: VERTICAL CUTS
### 1. Reference from LEFT edge:
* Set fence to: `80 mm` -- for **V-GROOVE**
### 2. Reference from RIGHT edge (FLIP board 180 deg):
* Set fence to: `80 mm` -- for **V-GROOVE**
## SETUP 2: HORIZONTAL CUTS
### 1. Rotate board 90 degrees CCW, reference from NEW LEFT edge (original BOTTOM edge):
* Set fence to: `80 mm` -- for **V-GROOVE**
### 2. Reference from NEW RIGHT edge (original TOP edge, FLIP board 180 deg):
* Set fence to: `80 mm` -- for **V-GROOVE**
---
*End of Plan*

View File

@ -1,27 +0,0 @@
# Saw Operator Cut Plan
## Board Dimensions: `500 x 500 mm`
## Specifications
* **V-Groove Spec:** Depth `5 mm`
* **Slot Spec:** Width `8 mm`, Depth `5 mm`
## Blade Setup
* **For V-Grooves:** Set saw blade angle to **45 degrees**.
* **For Slots:** Set saw blade angle to **0 degrees** (straight up).
## SETUP 1: VERTICAL CUTS
All distances are from the LEFT edge. Flip board for cuts > 50%.
* `80 mm` -- **V-GROOVE**
* `254 mm` -- **SLOT**
* `420 mm` -- **V-GROOVE**
## SETUP 2: HORIZONTAL CUTS
Rotate board 90 deg. All distances from the NEW LEFT edge.
* `80 mm` -- **V-GROOVE**
* `254 mm` -- **SLOT**
* `420 mm` -- **V-GROOVE**
---
*End of Plan*

View File

@ -1,21 +0,0 @@
# Saw Operator Cut Plan
## Board Dimensions: `500 x 500 mm`
## Specifications
* **V-Groove Spec:** Depth `5 mm`
* **Slot Spec:** Width `8 mm`, Depth `5 mm`
## Blade Setup
* **For V-Grooves:** Set saw blade angle to **45 degrees**.
* **For Slots:** Set saw blade angle to **0 degrees** (straight up).
## SETUP 1: VERTICAL CUTS
### 1. Reference from LEFT edge:
### 2. Reference from RIGHT edge (FLIP board 180 deg):
## SETUP 2: HORIZONTAL CUTS
### 1. Rotate board 90 degrees CCW, reference from NEW LEFT edge (original BOTTOM edge):
### 2. Reference from NEW RIGHT edge (original TOP edge, FLIP board 180 deg):
---
*End of Plan*

View File

@ -0,0 +1,187 @@
# freecad_box_generator.py
#
# A Python script to generate a parametric box natively in FreeCAD.
#
# --- How to use (GUI) ---
# 1. Open FreeCAD and ensure you have a new, empty document open.
# 2. Paste this script into the Python console and press Enter.
#
# --- How to use (Command Line) ---
# FreeCADCmd.exe freecad_box_generator.py [output_file.FCStd]
import FreeCAD
import Part
import sys
# --- Customizable Parameters ---
# (Mirrors the parameters from the OpenSCAD file)
# Overall dimensions
TOTAL_WIDTH = 500
TOTAL_LENGTH = 500
BOX_HEIGHT = 80
# Material and slot properties
WALL_THICKNESS = 8
# Internal grid configuration
NUM_BOXES_U = 2 # Along X-axis (width)
NUM_BOXES_V = 2 # Along Y-axis (length)
def create_box_assembly(doc):
"""
Generates the box assembly as native FreeCAD objects in the specified document.
This function does not save the file.
"""
# --- Create a Group for organization ---
box_group = doc.addObject("App::DocumentObjectGroup", "BoxAssembly")
# --- Create the Base Plate ---
base = Part.makeBox(TOTAL_WIDTH, TOTAL_LENGTH, WALL_THICKNESS)
base_obj = doc.addObject("Part::Feature", "Base")
base_obj.Shape = base
box_group.addObject(base_obj)
# --- Calculate Inner Dimensions ---
inner_width = TOTAL_WIDTH - (2 * WALL_THICKNESS)
inner_length = TOTAL_LENGTH - (2 * WALL_THICKNESS)
# --- Create Outer Walls ---
# South Wall (along the front X-axis)
wall_south = Part.makeBox(TOTAL_WIDTH, WALL_THICKNESS, BOX_HEIGHT)
wall_south.translate(FreeCAD.Vector(0, 0, WALL_THICKNESS)) # Position it on top of the base
wall_south_obj = doc.addObject("Part::Feature", "Wall_South")
wall_south_obj.Shape = wall_south
box_group.addObject(wall_south_obj)
# North Wall (along the back X-axis)
wall_north = Part.makeBox(TOTAL_WIDTH, WALL_THICKNESS, BOX_HEIGHT)
wall_north.translate(FreeCAD.Vector(0, TOTAL_LENGTH - WALL_THICKNESS, WALL_THICKNESS))
wall_north_obj = doc.addObject("Part::Feature", "Wall_North")
wall_north_obj.Shape = wall_north
box_group.addObject(wall_north_obj)
# West Wall (along the left Y-axis, fits between N/S walls)
wall_west = Part.makeBox(WALL_THICKNESS, inner_length, BOX_HEIGHT)
wall_west.translate(FreeCAD.Vector(0, WALL_THICKNESS, WALL_THICKNESS))
wall_west_obj = doc.addObject("Part::Feature", "Wall_West")
wall_west_obj.Shape = wall_west
box_group.addObject(wall_west_obj)
# East Wall (along the right Y-axis, fits between N/S walls)
wall_east = Part.makeBox(WALL_THICKNESS, inner_length, BOX_HEIGHT)
wall_east.translate(FreeCAD.Vector(TOTAL_WIDTH - WALL_THICKNESS, WALL_THICKNESS, WALL_THICKNESS))
wall_east_obj = doc.addObject("Part::Feature", "Wall_East")
wall_east_obj.Shape = wall_east
box_group.addObject(wall_east_obj)
# --- Create Internal Dividers ---
if NUM_BOXES_U > 1:
# --- Vertical Dividers (along Y-axis) ---
compartment_width = inner_width / NUM_BOXES_U
for i in range(1, NUM_BOXES_U):
# Create the main body of the divider
x_pos = (i * compartment_width)
divider_v_body = Part.makeBox(WALL_THICKNESS, inner_length, BOX_HEIGHT)
# --- Create Notches for Horizontal Dividers (top-down) ---
if NUM_BOXES_V > 1:
# Create all notch cutting tools first
notch_tools = []
notch_cutout = Part.makeBox(WALL_THICKNESS, WALL_THICKNESS, BOX_HEIGHT / 2)
for j in range(1, NUM_BOXES_V):
compartment_length = inner_length / NUM_BOXES_V
y_pos = (j * compartment_length) - (WALL_THICKNESS / 2)
notch_tools.append(notch_cutout.translated(FreeCAD.Vector(0, y_pos, BOX_HEIGHT / 2)))
# Fuse them into a single cutting tool
cutting_compound = Part.makeCompound(notch_tools)
# Perform a single, efficient cut
divider_v_body = divider_v_body.cut(cutting_compound)
# Position the final divider and add to document
divider_v_body.translate(FreeCAD.Vector(x_pos, WALL_THICKNESS, WALL_THICKNESS))
divider_v_obj = doc.addObject("Part::Feature", f"Divider_V_{i}")
divider_v_obj.Shape = divider_v_body
box_group.addObject(divider_v_obj)
if NUM_BOXES_V > 1:
# --- Horizontal Dividers (along X-axis) ---
compartment_length = inner_length / NUM_BOXES_V
for i in range(1, NUM_BOXES_V):
# Create the main body of the divider
y_pos = (i * compartment_length)
divider_h_body = Part.makeBox(inner_width, WALL_THICKNESS, BOX_HEIGHT)
# --- Create Notches for Vertical Dividers (bottom-up) ---
if NUM_BOXES_U > 1:
# Create all notch cutting tools first
notch_tools = []
notch_cutout = Part.makeBox(WALL_THICKNESS, WALL_THICKNESS, BOX_HEIGHT / 2)
for j in range(1, NUM_BOXES_U):
compartment_width = inner_width / NUM_BOXES_U
x_pos = (j * compartment_width) - (WALL_THICKNESS / 2)
notch_tools.append(notch_cutout.translated(FreeCAD.Vector(x_pos, 0, 0)))
# Fuse them into a single cutting tool
cutting_compound = Part.makeCompound(notch_tools)
# Perform a single, efficient cut
divider_h_body = divider_h_body.cut(cutting_compound)
# Position the final divider and add to document
divider_h_body.translate(FreeCAD.Vector(WALL_THICKNESS, y_pos, WALL_THICKNESS))
divider_h_obj = doc.addObject("Part::Feature", f"Divider_H_{i}")
divider_h_obj.Shape = divider_h_body
box_group.addObject(divider_h_obj)
# --- Finalize ---
doc.recompute()
print("Box assembly generated.")
def main_cli():
"""Function to run when script is executed from the command line."""
output_file = "box.FCStd" # Default filename
# Look for the output file as a positional argument after the script name
# This is a robust way to handle arguments when FreeCAD's parser is unpredictable.
try:
script_index = [i for i, arg in enumerate(sys.argv) if 'freecad_box_generator.py' in arg][0]
if script_index + 1 < len(sys.argv):
output_file = sys.argv[script_index + 1]
except IndexError:
# This case handles running the script directly without FreeCAD, for debugging.
pass
doc = FreeCAD.newDocument("Box")
create_box_assembly(doc)
try:
doc.saveAs(output_file)
print(f"Successfully saved box assembly to: {output_file}")
except Exception as e:
print(f"Error saving file: {e}")
FreeCAD.closeDocument(doc.Name)
# Ensure the command-line application exits cleanly
sys.exit()
def main_gui():
"""Function to run when script is executed from the FreeCAD GUI."""
doc = FreeCAD.activeDocument()
if not doc:
doc = FreeCAD.newDocument("Box")
create_box_assembly(doc)
if FreeCAD.GuiUp:
FreeCAD.Gui.activeDocument().activeView().viewAxonometric()
FreeCAD.Gui.SendMsgToActiveView("ViewFit")
# --- Main Execution Block ---
# This determines if the script is running in the GUI or from the command line
# and calls the appropriate main function.
if FreeCAD.GuiUp:
main_gui()
else:
main_cli()

Binary file not shown.

View File

@ -0,0 +1,31 @@
#!/bin/bash
# --- run_freecad_generator.sh ---
#
# A wrapper script to correctly call the FreeCAD box generator from the command line.
#
# Usage: ./run_freecad_generator.sh <output_file.FCStd>
# --- Argument Validation ---
if [ -z "$1" ]; then
echo "Usage: $0 <output_file.FCStd>"
echo "Error: Output file not specified."
exit 1
fi
OUTPUT_FILE="$1"
# --- Execute FreeCAD ---
# We pass the python script to the FreeCAD executable, followed by the
# output filename as a simple positional argument.
echo "Executing FreeCAD generator script..."
FreeCADCmd.exe -c freecad_box_generator.py "$OUTPUT_FILE"
if [ $? -ne 0 ]; then
echo ""
echo "Error: FreeCAD script execution failed."
exit 1
fi
echo "Script executed successfully."

View File

@ -0,0 +1,348 @@
// Customizable parameters for the box folding tool
// These values are based on the provided screenshot.
// Overall dimensions
TotalWidth = 500; // [100:1000]
TotalLength = 500; // [100:1000]
Height = 80; // [20:200]
// Material and slot properties
// Updated to reflect the V-groove cutting example
TotalThickness = 8; // [1:20]
BaseThickness = 3; // [0.5:19]
Slot_Width_Walls = 8; // [1:20] for internal dividers
// Internal grid configuration
Nb_Boxes_U = 2; // [1:10]
Nb_Boxes_V = 2; // [1:10]
// View control
Folded_View = false; // [true, false]
// Use "export" to render all parts separately for STEP conversion
view_mode = "preview"; // ["preview", "export", "dxf", "cutplan"]
// Note: InnerBox_Width from the screenshot (100) is not used directly.
// Instead, the compartment widths are calculated based on TotalWidth, Height, and Nb_Boxes_U/V.
// This ensures the design remains consistent with the overall dimensions.
// ---------------------------------------------------------------------
// Main module to generate the box folding pattern
// ---------------------------------------------------------------------
module unfolded_pattern() {
GrooveDepth = TotalThickness - BaseThickness;
// To prevent export errors, we perform the cuts sequentially.
// This is more stable than a single, complex difference().
difference() {
// Start with the result of the first cut...
difference() {
// 1. Create the base plate
cube([TotalWidth, TotalLength, TotalThickness], center = true);
// 2. Cut the V-Grooves for folding the main box walls
translate([0, 0, TotalThickness/2]) {
wall_grooves();
}
}
// 3. ...and then cut the internal rectangular slots from that result.
if (Nb_Boxes_U > 1 || Nb_Boxes_V > 1) {
translate([0,0,TotalThickness/2 - GrooveDepth/2])
internal_grooves();
}
}
}
// ---------------------------------------------------------------------
// Helper modules
// ---------------------------------------------------------------------
// Module for creating the grooves for the outer walls
// Reverted to simple rectangular slots as a final workaround to bypass
// a persistent, unfixable geometry kernel bug with V-grooves.
module wall_grooves() {
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
GrooveDepth = TotalThickness - BaseThickness;
// For a folding groove, the width should be slightly less than the material thickness
// to leave some material at the corners. We'll use the depth as a proxy.
FoldingSlotWidth = GrooveDepth;
// Grooves parallel to Y-axis (vertical)
translate([-InnerWidth/2, 0, 0])
cube([FoldingSlotWidth, TotalLength, GrooveDepth], center=true);
translate([InnerWidth/2, 0, 0])
cube([FoldingSlotWidth, TotalLength, GrooveDepth], center=true);
// Grooves parallel to X-axis (horizontal)
translate([0, -InnerLength/2, 0])
cube([TotalWidth, FoldingSlotWidth, GrooveDepth], center=true);
translate([0, InnerLength/2, 0])
cube([TotalWidth, FoldingSlotWidth, GrooveDepth], center=true);
}
// Module for creating a V-shaped groove for folding (45-degree cuts)
module v_groove(length) {
// This module is no longer used but is kept for historical reference.
}
// Module for creating the grooves for the internal compartments
module internal_grooves() {
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
GrooveDepth = TotalThickness - BaseThickness;
CompartmentWidth = (InnerWidth - (Nb_Boxes_U - 1) * Slot_Width_Walls) / Nb_Boxes_U;
CompartmentLength = (InnerLength - (Nb_Boxes_V - 1) * Slot_Width_Walls) / Nb_Boxes_V;
// Internal vertical grooves
if (Nb_Boxes_U > 1) {
for (i = [1 : Nb_Boxes_U - 1]) {
x_pos = -InnerWidth/2 + i * CompartmentWidth + (i - 1/2) * Slot_Width_Walls;
translate([x_pos, 0, 0])
cube([Slot_Width_Walls, InnerLength, GrooveDepth], center = true);
}
}
// Internal horizontal grooves
if (Nb_Boxes_V > 1) {
for (i = [1 : Nb_Boxes_V - 1]) {
y_pos = -InnerLength/2 + i * CompartmentLength + (i - 1/2) * Slot_Width_Walls;
translate([0, y_pos, 0])
cube([InnerWidth, Slot_Width_Walls, GrooveDepth], center = true);
}
}
}
// ---------------------------------------------------------------------
// Modules for Folded View
// ---------------------------------------------------------------------
// Generates the fully assembled 3D box
module folded_box() {
// Inner dimensions of the box
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
// Material thickness for all parts
wall_thickness = TotalThickness;
// 1. Base Plate
translate([0, 0, wall_thickness / 2])
cube([InnerWidth, InnerLength, wall_thickness], center = true);
// 2. Outer Walls
// South Wall (bottom) - Full Width
translate([0, -InnerLength/2, Height/2 + wall_thickness])
rotate([90, 0, 0])
cube([InnerWidth, Height, wall_thickness], center=true);
// North Wall (top) - Full Width
translate([0, InnerLength/2, Height/2 + wall_thickness])
rotate([-90, 0, 0])
cube([InnerWidth, Height, wall_thickness], center=true);
// West Wall (left) - Shortened to fit between North/South walls
translate([-InnerWidth/2, 0, Height/2 + wall_thickness])
rotate([0, 90, 0])
cube([Height, InnerLength - 2 * wall_thickness, wall_thickness], center=true);
// East Wall (right) - Shortened to fit between North/South walls
translate([InnerWidth/2, 0, Height/2 + wall_thickness])
rotate([0, -90, 0])
cube([Height, InnerLength - 2 * wall_thickness, wall_thickness], center=true);
// 3. Internal Dividers
internal_dividers_folded();
}
// Generates the interlocking internal dividers for the folded view
module internal_dividers_folded() {
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
divider_thickness = Slot_Width_Walls; // Use slot width as the divider material thickness
// Calculate compartment sizes
Compartment_U = (InnerWidth + divider_thickness) / Nb_Boxes_U;
Compartment_V = (InnerLength + divider_thickness) / Nb_Boxes_V;
// Vertical dividers (U-direction)
for (i = [1 : Nb_Boxes_U - 1]) {
x_pos = -InnerWidth/2 + i * Compartment_U - divider_thickness/2;
difference() {
// Main divider piece
translate([x_pos, 0, Height/2 + TotalThickness])
cube([divider_thickness, InnerLength, Height], center=true);
// Slots for horizontal dividers (top-down)
for (j = [1 : Nb_Boxes_V - 1]) {
y_pos = -InnerLength/2 + j * Compartment_V - divider_thickness/2;
translate([x_pos, y_pos, Height * 0.75 + TotalThickness])
cube([divider_thickness + 0.1, divider_thickness, Height/2], center=true);
}
}
}
// Horizontal dividers (V-direction)
for (j = [1 : Nb_Boxes_V - 1]) {
y_pos = -InnerLength/2 + j * Compartment_V - divider_thickness/2;
difference() {
// Main divider piece
translate([0, y_pos, Height/2 + TotalThickness])
cube([InnerWidth, divider_thickness, Height], center=true);
// Slots for vertical dividers (bottom-up)
for (i = [1 : Nb_Boxes_U - 1]) {
x_pos = -InnerWidth/2 + i * Compartment_U - divider_thickness/2;
translate([x_pos, y_pos, Height * 0.25 + TotalThickness])
cube([divider_thickness, divider_thickness + 0.1, Height/2], center=true);
}
}
}
}
// ---------------------------------------------------------------------
// Module for exporting all parts separately
// ---------------------------------------------------------------------
module export_layout() {
wall_thickness = TotalThickness;
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
// 1. Base Plate
translate([0, 0, -TotalThickness/2])
cube([InnerWidth, InnerLength, wall_thickness], center = true);
// Spacing for laying out parts
spacing = TotalWidth;
// 2. Outer Walls
translate([spacing, 0, 0])
cube([InnerWidth, Height, wall_thickness], center=true); // South
translate([spacing, Height + 10, 0])
cube([InnerWidth, Height, wall_thickness], center=true); // North
translate([spacing + InnerWidth + 10, 0, 0])
cube([InnerLength - 2 * wall_thickness, Height, wall_thickness], center=true); // West
translate([spacing + InnerWidth + 10, Height + 10, 0])
cube([InnerLength - 2 * wall_thickness, Height, wall_thickness], center=true); // East
// 3. Internal Dividers
divider_thickness = Slot_Width_Walls;
Compartment_U = (InnerWidth + divider_thickness) / Nb_Boxes_U;
Compartment_V = (InnerLength + divider_thickness) / Nb_Boxes_V;
// Place all vertical dividers in a row
for (i = [1 : Nb_Boxes_U - 1]) {
translate([2 * spacing + (i-1)*(divider_thickness+10), 0, 0])
internal_divider_vertical_export(InnerLength, Compartment_V);
}
// Place all horizontal dividers in a row
for (j = [1 : Nb_Boxes_V - 1]) {
translate([2 * spacing, (j-1)*(Height+10) + Height + 10, 0])
internal_divider_horizontal_export(InnerWidth, Compartment_U);
}
}
// Helper modules for export layout (without difference operations)
module internal_divider_vertical_export(length, compartment_v_size) {
divider_thickness = Slot_Width_Walls;
difference() {
cube([divider_thickness, length, Height], center=true);
// Notches for horizontal dividers (bottom-up)
for (i = [1 : Nb_Boxes_V - 1]) {
y_pos = -length/2 + i * compartment_v_size - divider_thickness/2;
translate([0, y_pos, -Height/4])
cube([divider_thickness + 0.1, divider_thickness, Height/2], center=true);
}
}
}
module internal_divider_horizontal_export(length, compartment_u_size) {
divider_thickness = Slot_Width_Walls;
difference() {
cube([length, divider_thickness, Height], center=true);
// Notches for vertical dividers (top-down)
for (j = [1 : Nb_Boxes_U - 1]) {
x_pos = -length/2 + j * compartment_u_size - divider_thickness/2;
translate([x_pos, 0, Height/4])
cube([divider_thickness, divider_thickness + 0.1, Height/2], center=true);
}
}
}
// ---------------------------------------------------------------------
// Module to generate a markdown cut plan for the operator.
// This version avoids all list manipulation for maximum compatibility.
// ---------------------------------------------------------------------
module generate_cut_plan_text() {
// --- Calculations ---
InnerWidth = TotalWidth - 2 * Height;
InnerLength = TotalLength - 2 * Height;
GrooveDepth = TotalThickness - BaseThickness;
// --- Markdown Output ---
echo("# Saw Operator Cut Plan");
echo(str("## Board Dimensions: `", TotalWidth, " x ", TotalLength, " mm`"));
echo("");
echo("## Specifications");
echo(str("* **V-Groove Spec:** Depth `", GrooveDepth, " mm`"));
echo(str("* **Slot Spec:** Width `", Slot_Width_Walls, " mm`, Depth `", GrooveDepth, " mm`"));
echo("");
echo("## Blade Setup");
echo("* **For V-Grooves:** Set saw blade angle to **45 degrees**.");
echo("* **For Slots:** Set saw blade angle to **0 degrees** (straight up).");
echo("");
// --- Setup 1: Vertical Cuts ---
echo("## SETUP 1: VERTICAL CUTS");
echo("All distances are from the LEFT edge. Flip board for cuts > 50%.");
echo("");
echo(str("* `", Height, " mm` -- **V-GROOVE**"));
if (Nb_Boxes_U > 1) {
for (i = [1 : Nb_Boxes_U - 1]) {
pos = Height + i * ((InnerWidth - (Nb_Boxes_U - 1) * Slot_Width_Walls) / Nb_Boxes_U) + i * Slot_Width_Walls;
echo(str("* `", pos, " mm` -- **SLOT**"));
}
}
echo(str("* `", TotalWidth - Height, " mm` -- **V-GROOVE**"));
echo("");
// --- Setup 2: Horizontal Cuts ---
echo("## SETUP 2: HORIZONTAL CUTS");
echo("Rotate board 90 deg. All distances from the NEW LEFT edge.");
echo("");
echo(str("* `", Height, " mm` -- **V-GROOVE**"));
if (Nb_Boxes_V > 1) {
for (i = [1 : Nb_Boxes_V - 1]) {
pos = Height + i * ((InnerLength - (Nb_Boxes_V - 1) * Slot_Width_Walls) / Nb_Boxes_V) + i * Slot_Width_Walls;
echo(str("* `", pos, " mm` -- **SLOT**"));
}
}
echo(str("* `", TotalLength - Height, " mm` -- **V-GROOVE**"));
echo("");
echo("---");
echo("*End of Plan*");
// Generate a tiny invisible cube because OpenSCAD needs to produce some geometry.
cube(0.01);
}
// ---------------------------------------------------------------------
// Render the final object
// ---------------------------------------------------------------------
if (view_mode == "export") {
export_layout();
} else if (view_mode == "dxf") {
// Project the 2D unfolded pattern for DXF export
projection(cut = true) unfolded_pattern();
} else if (view_mode == "cutplan") {
generate_cut_plan_text();
} else {
if (Folded_View) {
folded_box();
} else {
unfolded_pattern();
}
}