x-algorithm/phoenix/run_ranker.py
2026-01-20 02:31:49 +00:00

122 lines
3.9 KiB
Python

# Copyright 2026 X.AI Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
from grok import TransformerConfig
from recsys_model import PhoenixModelConfig, HashConfig
from runners import RecsysInferenceRunner, ModelRunner, create_example_batch, ACTIONS
def main():
# Model configuration
emb_size = 128 # Embedding dimension
num_actions = len(ACTIONS) # Number of explicit engagement actions
history_seq_len = 32 # Max history length
candidate_seq_len = 8 # Max candidates to rank
# Hash configuration
hash_config = HashConfig(
num_user_hashes=2,
num_item_hashes=2,
num_author_hashes=2,
)
recsys_model = PhoenixModelConfig(
emb_size=emb_size,
num_actions=num_actions,
history_seq_len=history_seq_len,
candidate_seq_len=candidate_seq_len,
hash_config=hash_config,
product_surface_vocab_size=16,
model=TransformerConfig(
emb_size=emb_size,
widening_factor=2,
key_size=64,
num_q_heads=2,
num_kv_heads=2,
num_layers=2,
attn_output_multiplier=0.125,
),
)
# Create inference runner
inference_runner = RecsysInferenceRunner(
runner=ModelRunner(
model=recsys_model,
bs_per_device=0.125,
),
name="recsys_local",
)
print("Initializing model...")
inference_runner.initialize()
print("Model initialized!")
# Create example batch with simulated posts
print("\n" + "=" * 70)
print("RECOMMENDATION SYSTEM DEMO")
print("=" * 70)
batch_size = 1
example_batch, example_embeddings = create_example_batch(
batch_size=batch_size,
emb_size=emb_size,
history_len=history_seq_len,
num_candidates=candidate_seq_len,
num_actions=num_actions,
num_user_hashes=hash_config.num_user_hashes,
num_item_hashes=hash_config.num_item_hashes,
num_author_hashes=hash_config.num_author_hashes,
product_surface_vocab_size=recsys_model.product_surface_vocab_size,
)
action_names = [action.replace("_", " ").title() for action in ACTIONS]
# Count valid history items (where first post hash is non-zero)
valid_history_count = int((example_batch.history_post_hashes[:, :, 0] != 0).sum()) # type: ignore
print(f"\nUser has viewed {valid_history_count} posts in their history")
print(f"Ranking {candidate_seq_len} candidate posts...")
# Rank candidates
ranking_output = inference_runner.rank(example_batch, example_embeddings)
# Display results
scores = np.array(ranking_output.scores[0]) # [num_candidates, num_actions]
ranked_indices = np.array(ranking_output.ranked_indices[0]) # [num_candidates]
print("\n" + "-" * 70)
print("RANKING RESULTS (ordered by predicted 'Favorite Score' probability)")
print("-" * 70)
for rank, idx in enumerate(ranked_indices):
idx = int(idx)
print(f"\nRank {rank + 1}: ")
print(" Predicted engagement probabilities:")
for action_idx, action_name in enumerate(action_names):
prob = float(scores[idx, action_idx])
bar = "" * int(prob * 20) + "" * (20 - int(prob * 20))
print(f" {action_name:24s}: {bar} {prob:.3f}")
print("\n" + "=" * 70)
print("Demo complete!")
print("=" * 70)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()