mirror of
https://github.com/xai-org/x-algorithm.git
synced 2026-02-13 03:05:06 +01:00
373 lines
12 KiB
Python
373 lines
12 KiB
Python
# Copyright 2026 X.AI Corp.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from dataclasses import dataclass
|
|
from typing import Any, NamedTuple, Optional, Tuple
|
|
|
|
import haiku as hk
|
|
import jax
|
|
import jax.numpy as jnp
|
|
|
|
from grok import TransformerConfig, Transformer
|
|
from recsys_model import (
|
|
HashConfig,
|
|
RecsysBatch,
|
|
RecsysEmbeddings,
|
|
block_history_reduce,
|
|
block_user_reduce,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
EPS = 1e-12
|
|
INF = 1e12
|
|
|
|
|
|
class RetrievalOutput(NamedTuple):
|
|
"""Output of the retrieval model."""
|
|
|
|
user_representation: jax.Array
|
|
top_k_indices: jax.Array
|
|
top_k_scores: jax.Array
|
|
|
|
|
|
@dataclass
|
|
class CandidateTower(hk.Module):
|
|
"""Candidate tower that projects post+author embeddings to a shared embedding space.
|
|
|
|
This tower takes the concatenated embeddings of a post and its author,
|
|
and projects them to a normalized representation suitable for similarity search.
|
|
"""
|
|
|
|
emb_size: int
|
|
name: Optional[str] = None
|
|
|
|
def __call__(self, post_author_embedding: jax.Array) -> jax.Array:
|
|
"""Project post+author embeddings to normalized representation.
|
|
|
|
Args:
|
|
post_author_embedding: Concatenated post and author embeddings
|
|
Shape: [B, C, num_hashes, D] or [B, num_hashes, D]
|
|
|
|
Returns:
|
|
Normalized candidate representation
|
|
Shape: [B, C, D] or [B, D]
|
|
"""
|
|
if len(post_author_embedding.shape) == 4:
|
|
B, C, _, _ = post_author_embedding.shape
|
|
post_author_embedding = jnp.reshape(post_author_embedding, (B, C, -1))
|
|
else:
|
|
B, _, _ = post_author_embedding.shape
|
|
post_author_embedding = jnp.reshape(post_author_embedding, (B, -1))
|
|
|
|
embed_init = hk.initializers.VarianceScaling(1.0, mode="fan_out")
|
|
|
|
proj_1 = hk.get_parameter(
|
|
"candidate_tower_projection_1",
|
|
[post_author_embedding.shape[-1], self.emb_size * 2],
|
|
dtype=jnp.float32,
|
|
init=embed_init,
|
|
)
|
|
|
|
proj_2 = hk.get_parameter(
|
|
"candidate_tower_projection_2",
|
|
[self.emb_size * 2, self.emb_size],
|
|
dtype=jnp.float32,
|
|
init=embed_init,
|
|
)
|
|
|
|
hidden = jnp.dot(post_author_embedding.astype(proj_1.dtype), proj_1)
|
|
hidden = jax.nn.silu(hidden)
|
|
candidate_embeddings = jnp.dot(hidden.astype(proj_2.dtype), proj_2)
|
|
|
|
candidate_norm_sq = jnp.sum(candidate_embeddings**2, axis=-1, keepdims=True)
|
|
candidate_norm = jnp.sqrt(jnp.maximum(candidate_norm_sq, EPS))
|
|
candidate_representation = candidate_embeddings / candidate_norm
|
|
|
|
return candidate_representation.astype(post_author_embedding.dtype)
|
|
|
|
|
|
@dataclass
|
|
class PhoenixRetrievalModelConfig:
|
|
"""Configuration for the Phoenix Retrieval Model.
|
|
|
|
This model uses the same transformer architecture as the Phoenix ranker
|
|
for encoding user representations.
|
|
"""
|
|
|
|
model: TransformerConfig
|
|
emb_size: int
|
|
history_seq_len: int = 128
|
|
candidate_seq_len: int = 32
|
|
|
|
name: Optional[str] = None
|
|
fprop_dtype: Any = jnp.bfloat16
|
|
|
|
hash_config: HashConfig = None # type: ignore
|
|
|
|
product_surface_vocab_size: int = 16
|
|
|
|
_initialized: bool = False
|
|
|
|
def __post_init__(self):
|
|
if self.hash_config is None:
|
|
self.hash_config = HashConfig()
|
|
|
|
def initialize(self):
|
|
self._initialized = True
|
|
return self
|
|
|
|
def make(self):
|
|
if not self._initialized:
|
|
logger.warning(f"PhoenixRetrievalModel {self.name} is not initialized. Initializing.")
|
|
self.initialize()
|
|
|
|
return PhoenixRetrievalModel(
|
|
model=self.model.make(),
|
|
config=self,
|
|
fprop_dtype=self.fprop_dtype,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class PhoenixRetrievalModel(hk.Module):
|
|
"""A two-tower retrieval model using the Phoenix transformer for user encoding.
|
|
|
|
This model implements the two-tower architecture for efficient retrieval:
|
|
- User Tower: Encodes user features + history using the Phoenix transformer
|
|
- Candidate Tower: Projects candidate embeddings to a shared space
|
|
|
|
The user and candidate representations are L2-normalized, enabling efficient
|
|
approximate nearest neighbor (ANN) search using dot product similarity.
|
|
"""
|
|
|
|
model: Transformer
|
|
config: PhoenixRetrievalModelConfig
|
|
fprop_dtype: Any = jnp.bfloat16
|
|
name: Optional[str] = None
|
|
|
|
def _get_action_embeddings(
|
|
self,
|
|
actions: jax.Array,
|
|
) -> jax.Array:
|
|
"""Convert multi-hot action vectors to embeddings."""
|
|
config = self.config
|
|
_, _, num_actions = actions.shape
|
|
D = config.emb_size
|
|
|
|
embed_init = hk.initializers.VarianceScaling(1.0, mode="fan_out")
|
|
action_projection = hk.get_parameter(
|
|
"action_projection",
|
|
[num_actions, D],
|
|
dtype=jnp.float32,
|
|
init=embed_init,
|
|
)
|
|
|
|
actions_signed = (2 * actions - 1).astype(jnp.float32)
|
|
action_emb = jnp.dot(actions_signed.astype(action_projection.dtype), action_projection)
|
|
|
|
valid_mask = jnp.any(actions, axis=-1, keepdims=True)
|
|
action_emb = action_emb * valid_mask
|
|
|
|
return action_emb.astype(self.fprop_dtype)
|
|
|
|
def _single_hot_to_embeddings(
|
|
self,
|
|
input: jax.Array,
|
|
vocab_size: int,
|
|
emb_size: int,
|
|
name: str,
|
|
) -> jax.Array:
|
|
"""Convert single-hot indices to embeddings via lookup table."""
|
|
embed_init = hk.initializers.VarianceScaling(1.0, mode="fan_out")
|
|
embedding_table = hk.get_parameter(
|
|
name,
|
|
[vocab_size, emb_size],
|
|
dtype=jnp.float32,
|
|
init=embed_init,
|
|
)
|
|
|
|
input_one_hot = jax.nn.one_hot(input, vocab_size)
|
|
output = jnp.dot(input_one_hot, embedding_table)
|
|
return output.astype(self.fprop_dtype)
|
|
|
|
def build_user_representation(
|
|
self,
|
|
batch: RecsysBatch,
|
|
recsys_embeddings: RecsysEmbeddings,
|
|
) -> Tuple[jax.Array, jax.Array]:
|
|
"""Build user representation from user features and history.
|
|
|
|
Uses the Phoenix transformer to encode user + history embeddings
|
|
into a single user representation vector.
|
|
|
|
Args:
|
|
batch: RecsysBatch containing hashes, actions, product surfaces
|
|
recsys_embeddings: RecsysEmbeddings containing pre-looked-up embeddings
|
|
|
|
Returns:
|
|
user_representation: L2-normalized user embedding [B, D]
|
|
user_norm: Pre-normalization L2 norm [B, 1]
|
|
"""
|
|
config = self.config
|
|
hash_config = config.hash_config
|
|
|
|
history_product_surface_embeddings = self._single_hot_to_embeddings(
|
|
batch.history_product_surface, # type: ignore
|
|
config.product_surface_vocab_size,
|
|
config.emb_size,
|
|
"product_surface_embedding_table",
|
|
)
|
|
|
|
history_actions_embeddings = self._get_action_embeddings(batch.history_actions) # type: ignore
|
|
|
|
user_embeddings, user_padding_mask = block_user_reduce(
|
|
batch.user_hashes, # type: ignore
|
|
recsys_embeddings.user_embeddings, # type: ignore
|
|
hash_config.num_user_hashes,
|
|
config.emb_size,
|
|
1.0,
|
|
)
|
|
|
|
history_embeddings, history_padding_mask = block_history_reduce(
|
|
batch.history_post_hashes, # type: ignore
|
|
recsys_embeddings.history_post_embeddings, # type: ignore
|
|
recsys_embeddings.history_author_embeddings, # type: ignore
|
|
history_product_surface_embeddings,
|
|
history_actions_embeddings,
|
|
hash_config.num_item_hashes,
|
|
hash_config.num_author_hashes,
|
|
1.0,
|
|
)
|
|
|
|
embeddings = jnp.concatenate([user_embeddings, history_embeddings], axis=1)
|
|
padding_mask = jnp.concatenate([user_padding_mask, history_padding_mask], axis=1)
|
|
|
|
model_output = self.model(
|
|
embeddings.astype(self.fprop_dtype),
|
|
padding_mask,
|
|
candidate_start_offset=None,
|
|
)
|
|
|
|
user_outputs = model_output.embeddings
|
|
|
|
mask_float = padding_mask.astype(jnp.float32)[:, :, None] # [B, T, 1]
|
|
user_embeddings_masked = user_outputs * mask_float
|
|
user_embedding_sum = jnp.sum(user_embeddings_masked, axis=1) # [B, D]
|
|
mask_sum = jnp.sum(mask_float, axis=1) # [B, 1]
|
|
user_representation = user_embedding_sum / jnp.maximum(mask_sum, 1.0)
|
|
|
|
user_norm_sq = jnp.sum(user_representation**2, axis=-1, keepdims=True)
|
|
user_norm = jnp.sqrt(jnp.maximum(user_norm_sq, EPS))
|
|
user_representation = user_representation / user_norm
|
|
|
|
return user_representation, user_norm
|
|
|
|
def build_candidate_representation(
|
|
self,
|
|
batch: RecsysBatch,
|
|
recsys_embeddings: RecsysEmbeddings,
|
|
) -> Tuple[jax.Array, jax.Array]:
|
|
"""Build candidate (item) representations.
|
|
|
|
Projects post + author embeddings to a shared embedding space
|
|
using the candidate tower MLP.
|
|
|
|
Args:
|
|
batch: RecsysBatch containing candidate hashes
|
|
recsys_embeddings: RecsysEmbeddings containing pre-looked-up embeddings
|
|
|
|
Returns:
|
|
candidate_representation: L2-normalized candidate embeddings [B, C, D]
|
|
candidate_padding_mask: Valid candidate mask [B, C]
|
|
"""
|
|
config = self.config
|
|
|
|
candidate_post_embeddings = recsys_embeddings.candidate_post_embeddings
|
|
candidate_author_embeddings = recsys_embeddings.candidate_author_embeddings
|
|
|
|
post_author_embedding = jnp.concatenate(
|
|
[candidate_post_embeddings, candidate_author_embeddings], axis=2
|
|
)
|
|
|
|
candidate_tower = CandidateTower(
|
|
emb_size=config.emb_size,
|
|
)
|
|
candidate_representation = candidate_tower(post_author_embedding)
|
|
|
|
candidate_padding_mask = (batch.candidate_post_hashes[:, :, 0] != 0).astype(jnp.bool_) # type: ignore
|
|
|
|
return candidate_representation, candidate_padding_mask
|
|
|
|
def __call__(
|
|
self,
|
|
batch: RecsysBatch,
|
|
recsys_embeddings: RecsysEmbeddings,
|
|
corpus_embeddings: jax.Array,
|
|
top_k: int,
|
|
corpus_mask: Optional[jax.Array] = None,
|
|
) -> RetrievalOutput:
|
|
"""Retrieve top-k candidates from corpus for each user.
|
|
|
|
Args:
|
|
batch: RecsysBatch containing hashes, actions, product surfaces
|
|
recsys_embeddings: RecsysEmbeddings containing pre-looked-up embeddings
|
|
corpus_embeddings: [N, D] normalized corpus candidate embeddings
|
|
top_k: Number of candidates to retrieve
|
|
corpus_mask: [N] optional mask for valid corpus entries
|
|
|
|
Returns:
|
|
RetrievalOutput containing user representation and top-k results
|
|
"""
|
|
user_representation, _ = self.build_user_representation(batch, recsys_embeddings)
|
|
|
|
top_k_indices, top_k_scores = self._retrieve_top_k(
|
|
user_representation, corpus_embeddings, top_k, corpus_mask
|
|
)
|
|
|
|
return RetrievalOutput(
|
|
user_representation=user_representation,
|
|
top_k_indices=top_k_indices,
|
|
top_k_scores=top_k_scores,
|
|
)
|
|
|
|
def _retrieve_top_k(
|
|
self,
|
|
user_representation: jax.Array,
|
|
corpus_embeddings: jax.Array,
|
|
top_k: int,
|
|
corpus_mask: Optional[jax.Array] = None,
|
|
) -> Tuple[jax.Array, jax.Array]:
|
|
"""Retrieve top-k candidates from a corpus for each user.
|
|
|
|
Args:
|
|
user_representation: [B, D] normalized user embeddings
|
|
corpus_embeddings: [N, D] normalized corpus candidate embeddings
|
|
top_k: Number of candidates to retrieve
|
|
corpus_mask: [N] optional mask for valid corpus entries
|
|
|
|
Returns:
|
|
top_k_indices: [B, K] indices of top-k candidates
|
|
top_k_scores: [B, K] similarity scores of top-k candidates
|
|
"""
|
|
scores = jnp.matmul(user_representation, corpus_embeddings.T)
|
|
|
|
if corpus_mask is not None:
|
|
scores = jnp.where(corpus_mask[None, :], scores, -INF)
|
|
|
|
top_k_scores, top_k_indices = jax.lax.top_k(scores, top_k)
|
|
|
|
return top_k_indices, top_k_scores
|