12 KiB
12 KiB
Iterator Implementation Review
Potential Bugs and Edge Cases
Type Safety Issues
- Excessive use of
anytype in key functions:removeEmptyObjectsfunction usesanyreturn type and parameter (line 19)- Limited type checking in cache key generation and object cloning
Error Handling
-
Inconsistent error handling:
- In
createLLMTransformer, errors are caught but only logged (line 106) without retry mechanism outside oftransformPath - Retry mechanism in
transformPathuses exponential backoff but lacks circuit breaking capability
- In
-
API errors not properly categorized:
- No distinction between transient errors (like rate limits) and permanent errors (like invalid requests)
- Missing status code handling from LLM API responses
- No handling of network timeouts for long-running LLM requests
Cache Implementation
-
Cache key generation issues:
- Cache key for
createObjectCacheKey(line 137) uses JSON.stringify on full data objects, which may:- Create extremely large cache keys
- Fail with circular references
- Generate different keys for identical logical objects if properties are in different orders
- Cache key for
-
Cache expiration:
- Fixed default expiration time (7 days) might not be suitable for all use cases
- No mechanism to force refresh or invalidate specific cache entries
-
Cache isolation:
- No isolation between different versions of models (newer models might give better results)
- No context-based cache namespacing (different applications using same cache)
Concurrency and Performance
-
Fixed throttling implementation:
throttleDelayis applied globally without considering API rate limits- Default concurrency of 1 may be overly cautious for some APIs
- No adaptability to different LLM providers' rate limit policies
-
JSON parsing overhead:
- Deep cloning via
JSON.parse(JSON.stringify())in multiple places (lines 189, 208) can cause:- Performance issues with large objects
- Loss of data for values that don't serialize to JSON (e.g., Date objects, functions)
- Memory spikes during transformation
- Deep cloning via
-
Inefficient parallel execution:
- The iterator processes field mappings sequentially rather than in parallel batches
- No priority system for more important transformations
Data Integrity
-
Deep merge implementation risks:
- The custom
deepMergefunction (line 144) doesn't properly handle arrays - No protection against prototype pollution
- May overwrite existing values unexpectedly
- The custom
-
JSONPath implementation limitations:
- No validation of JSONPath syntax
- No handling for missing paths
- Potential for duplicate updates when JSONPath matches multiple nodes
Integration Issues
-
LLM integration rigidity:
- Tight coupling to specific LLM API structure in
createLLMTransformer - Limited flexibility for different output formats (assumes string response)
- No streaming support for larger transformations
- Tight coupling to specific LLM API structure in
-
Missing validation for prompt templates:
- No checking if prompts exceed token limits
- Prompts are concatenated with input without token awareness
- No handling of LLM context windows
Suggested Improvements
Type Safety
- Replace uses of
anywith proper type definitions:
export const removeEmptyObjects = <T>(obj: T): T => {
// Implementation with proper type checking
}
- Define stricter interfaces for cache keys and values:
interface CacheKey {
prompt: string;
model?: string;
router?: string;
mode?: string;
}
Error Handling
- Implement consistent error handling strategy:
// Add proper error classes
export class TransformError extends Error {
constructor(public path: string, public originalValue: string, public cause: Error) {
super(`Error transforming ${path}: ${cause.message}`);
this.name = 'TransformError';
}
}
- Add circuit breaker pattern for API calls:
// In createLLMTransformer
const circuitBreaker = new CircuitBreaker({
failureThreshold: 3,
resetTimeout: 30000
});
return async (input: string, jsonPath: string): Promise<string> => {
return circuitBreaker.fire(() => callLLMAPI(input, jsonPath));
};
- Categorize and handle API errors appropriately:
async function handleLLMRequest(task: IKBotTask, input: string): Promise<string> {
try {
return await run(task);
} catch (error) {
if (error.status === 429) {
// Rate limit - back off and retry
return await retryWithExponentialBackoff(() => run(task));
} else if (error.status >= 400 && error.status < 500) {
// Client error - fix request or abort
throw new ClientError(error.message);
} else {
// Server error - retry with caution
return await retryWithLinearBackoff(() => run(task));
}
}
}
Cache Implementation
- Improve cache key generation:
const createCacheKey = (task: IKBotTask, input: string): string => {
// Create deterministic hash of relevant properties only
const keyObj = {
prompt: task.prompt,
model: task.model,
input: input.substring(0, 100) // Limit input size in key
};
return createHash('sha256').update(JSON.stringify(keyObj)).digest('hex');
};
- Add cache control capabilities:
export interface CacheConfig {
enabled?: boolean;
namespace?: string;
expiration?: number;
forceRefresh?: boolean;
keyGenerator?: (task: IKBotTask, input: string) => string;
versionStrategy?: 'model-based' | 'time-based' | 'none';
}
- Implement context-aware cache namespacing:
function createContextualNamespace(config: CacheConfig, options: IKBotTask): string {
const appId = options.appId || 'default';
const modelVersion = options.model?.replace(/[^\w]/g, '-') || 'unknown-model';
return `${config.namespace || 'llm-responses'}-${appId}-${modelVersion}`;
}
Concurrency and Performance
- Replace deep cloning with structured cloning or immutable data libraries:
import { structuredClone } from 'node:util'; // Node.js 17+
// Replace JSON.parse(JSON.stringify(obj)) with:
const transformedObj = structuredClone(obj);
- Add adaptive throttling based on API responses:
const adaptiveThrottle = createAdaptiveThrottle({
initialLimit: 10,
initialInterval: 1000,
maxLimit: 50,
adjustOnError: (err) => {
// Check rate limit errors and adjust accordingly
}
});
- Implement parallel batch processing:
// Process mappings in parallel batches
async function transformInBatches(obj: Record<string, any>, mappings: FieldMapping[], batchSize: number = 3) {
const batches = [];
for (let i = 0; i < mappings.length; i += batchSize) {
batches.push(mappings.slice(i, i + batchSize));
}
for (const batch of batches) {
await Promise.all(batch.map(mapping => processMapping(obj, mapping)));
}
}
Interface Improvements
- Simplify the API for common use cases:
// Simple transform helper
export async function transform<T>(
data: T,
mapping: FieldMapping | FieldMapping[],
options?: Partial<IKBotTask>
): Promise<T> {
const mappings = Array.isArray(mapping) ? mapping : [mapping];
const result = structuredClone(data);
await createIterator(result, options || {}).transform(mappings);
return result;
}
- Add typesafe JSONPath:
// Type-safe JSONPath function
export function createTypeSafePath<T, R>(
path: string,
validator: (value: unknown) => value is R
): JSONPathSelector<T, R> {
// Implementation
}
- Support streaming transformations:
export interface StreamOptions extends IOptions {
onProgress?: (current: number, total: number) => void;
onFieldTransform?: (path: string, before: string, after: string) => void;
}
export function createStreamingIterator(
obj: Record<string, any>,
optionsMixin: Partial<IKBotTask>,
streamOptions: StreamOptions
): IteratorFactory {
// Implementation with callbacks for progress updates
}
Alternative Libraries
Lightweight Alternatives
-
JSONata instead of JSONPath
- More expressive query language
- Smaller footprint (54KB vs 120KB)
- Built-in transformation capabilities
- Example conversion:
// Instead of JSONPath: const paths = JSONPath({ path: '$.products.fruits[*].description', json: obj }); // With JSONata: const result = jsonata('products.fruits.description').evaluate(obj); -
p-limit instead of p-throttle and p-map
- Simpler API
- More focused functionality
- Smaller bundle size
- Example conversion:
// Instead of: const throttle = pThrottle({ limit: 1, interval: throttleDelay, }); await pMap(items, async (item) => throttle(transform)(item)); // With p-limit: const limit = pLimit(concurrentTasks); await Promise.all(items.map(item => limit(() => new Promise(r => setTimeout(() => r(transform(item)), throttleDelay))) )); -
fast-copy instead of JSON.parse/stringify
- 2-3x faster than JSON method
- Handles circular references
- Preserves prototypes
- Example conversion:
// Instead of: const copy = JSON.parse(JSON.stringify(obj)); // With fast-copy: import copy from 'fast-copy'; const objCopy = copy(obj); -
object-path instead of custom path traversal
- Well-tested library for object access by path
- Simpler error handling
- Better performance
- Example conversion:
// Instead of custom path traversal: let current = obj; for (const key of keys) { if (current[key] === undefined) return; current = current[key]; } // With object-path: import objectPath from 'object-path'; const value = objectPath.get(obj, path); objectPath.set(obj, path, newValue); -
oazapfts or openapi-typescript for LLM API clients
- Type-safe API clients generated from OpenAPI specs
- Consistent error handling
- Proper request/response typing
- Example:
import { createClient } from './generated/openai-client'; const client = createClient({ apiKey: process.env.OPENAI_API_KEY, }); const response = await client.createChatCompletion({ model: 'gpt-4', messages: [{ role: 'user', content: prompt }] });
Enhanced Interface Suggestions
// Strongly typed transform function
export async function transform<T extends Record<string, any>>(
data: T,
options: {
paths: {
source: string;
target?: string;
prompt: string;
}[];
model?: string;
router?: string;
cache?: boolean | Partial<CacheConfig>;
concurrency?: number;
logger?: Partial<ILogger>;
}
): Promise<T>;
// Simplified usage example:
const result = await transform(myData, {
paths: [
{
source: '$.description',
prompt: 'Make this more engaging'
},
{
source: '$.title',
target: 'seoTitle',
prompt: 'Create an SEO-optimized version'
}
],
model: 'gpt-4',
concurrency: 5
});